Who and what do *who* and *what* range over cross-linguistically?

Patrick D. Elliott^{*} Andreea C. Nicolae[†] Uli Sauerland[‡] March 5, 2017

* University College London, ^{†,‡}Leibniz-Zentrum Allgemeine Sprachwissenschaft * p.elliott@ucl.ac.uk [†]nicolae@zas.gwz-berlin.de [‡]uli@alum.mit.edu

- Dayal's (1996) account of the Uniqueness Presupposition.
- A problem for Dayal from cross-linguistic data.
- The weak theory of plurality.
- Analysis in terms of higher-order quantification.

Singular which questions carry a Uniqueness Presupposition (UP).

- (1) Which employee left early?
 - a. Moss left early.
 - b. #Roy and Moss left early.

Plural which questions carry an anti-singleton inference.

- (2) Which employees left early?
 - a. #Roy left early.
 - b. Roy and Moss left early.

Simplex wh-questions carry neither a UP nor an anti-singleton inference(!)

- (3) Who left early?
 - a. Roy left early.
 - b. Roy and Moss left early.

- singular which UP
- plural which anti-singleton
- who neither(!)

What is especially puzzling is that *who* patterns with neither singular *which* nor plural *which*.

Dayal's (1996) solution is to propose the *Maximal Informativity Principle* (MIP): a question Q presupposes the existence of a unique maximally-informative true answer to Q.

Dayal cashes this out as an operator that composes with a question at LF.

(4)
$$\mathfrak{A}(w)(Q) = \iota p[p(w) \land Q(p) \land \forall p'[[p'(w) \land Q(p)] \to p \subseteq p']]$$

Dayal additionally assumes that singular *which* phrases range over atomic individuals only.

This immediately derives the UP for singular which-questions.

$$\llbracket (\mathbf{1}) \rrbracket = \left\{ \begin{array}{l} \textcircled{1} \lambda w. \texttt{leftEarly}_w(\texttt{Roy}), \\ \textcircled{2} \lambda w. \texttt{leftEarly}_w(\texttt{Moss}), \\ \lambda w. \texttt{leftEarly}_w(\texttt{Jen}) \end{array} \right\}$$

If ① and ② are both true in $w_{\textcircled{0}}$, then $\mathfrak{A}(w_{\textcircled{0}})(\llbracket(1)\rrbracket)$ is undefined, since ① does not entail ③, and ② does not entail ①.

Dayal assumes that semantically plural *which*-phrases may also range over pluralities.

ſ	$\textcircled{1}{\lambda w}.\texttt{leftEarly}_w(\texttt{Roy}),$
	$@ \lambda w.leftEarly_w(Moss), \\$
	$\lambda w.$ leftEarly $_w($ Jen $),$
[[(2)]] = {	$\Im \lambda w$.leftEarly _w (RoyAndMoss),
	λw .leftEarly $_w$ (RoyAndJen),
	$\lambda w.$ leftEarly $_w$ (MossAndJen),
l	λw .leftEarly $_w$ (RoyMossAndJen)

If (1), (2), and (3) are all true in $w_{(0)}$, then $\mathfrak{A}(w_{(0)})([(2)])$ is defined, returning the proposition in (3).

In order to account for the absence of a UP with simplex *wh*-questions, Dayal claims that, although simplex *wh*-expressions such as "who" are morphosyntactically singular (in English), they are semantically plural.

(5) Who { is | *are } leaving early?

Dayal's explanation, therefore, rests on an idiosyncratic property of English.

Dayal's account makes predictions about languages which make a distinction between *who.SG* and *who.PL*.

Our findings based on Spanish and Hungarian:

- who.SG questions do not carry a UP.
- who.PL questions carry an anti-singleton inference.

Spanish which questions

- (6) *Qué chico se fue pronto?* Which boy.SG refl left early?
 - a. John left early.
 - b. #John and Bill left early.
- (7) Qué chicos se fueron pronto?Which boy.PL refl left early?
 - a. #John left early.
 - b. John and Bill left early.

Spanish who questions

- (8) Quién se fue pronto?Who.SG refl left early?
 - a. John left early.
 - b. John and Bill left early.
- (9) *Quiénes se fueron pronto?* Who.PL refl left early?
 - a. #John left early.
 - b. John and Bill left early.

Hungarian which questions

- (10) *Melyik fiú ment el?* which boy.SG goes away?
 - a. John went away.
 - b. #John and Bill went away.
- (11) Melyik fiú-k men-t-ek el? which boy.PL went away?
 - a. John went away.
 - b. #John and Bill went away.

- (12) Ki énekel? who.SG sings?
 - a. John sings.
 - b. John and Mary sing.
- (13) Ki-k énekel-nek? who.PL sing?
 - a. #John sings.
 - b. John and Mary sing.

A possible account consistent with Dayal's assumptions.

→ Both *who.SG* and *who.PL* are semantically plural.

Problems for this account:

→ Lack of congruity between semantics and morphosyntax (learnability issues)

~> Accounting for the anti-singleton inference associated with who.PL

Plurality

We assume that semantically plural DPs denote *i-(ndividual)* sums (Link 1983).

(14) a.
$$[[Roy and Moss]] = Roy \oplus Moss$$

b. $[the employees] = Roy \oplus Moss \oplus Jen$

 D_e is closed under \oplus .

(15)
$$D_e = \begin{cases} \text{Roy}, \text{Moss}, \text{Jen} \\ \text{Roy} \oplus \text{Moss}, \text{Roy} \oplus \text{Jen}, \text{Moss} \oplus \text{Jen} \\ \text{Roy} \oplus \text{Moss} \oplus \text{Jen} \end{cases}$$

The weak theory of plurality

Conjecture: the plural is semantically vacuous; the singular is meaningful (Sauerland 2003, 2008 and Sauerland, Anderssen & Yatsushiro 2005).

presupposition

(16) a. $\llbracket SG \rrbracket = \lambda x : ATOM_{@}(x) . x$

b.
$$\llbracket \mathsf{PL} \rrbracket = \lambda x.x$$

N.b. following Sauerland 2003 we assume that number heads a ϕ P projection, and applies to DP rather than NP.

- (17) $[the] = \lambda P.\sigma(P) \sigma$ is defined for *P* iff there is a unique maximal element in *P*
- (18) $\llbracket \text{the man left} \rrbracket = \lambda w : \text{ATOM}_{@}(\sigma(\text{man}_{@})). \text{left}_{w}(\sigma(\text{man}_{@}))$
- (19) $\llbracket \text{the men left} \rrbracket = \lambda w. \text{left}_w(\sigma(\text{man}_{@}))$
- (20) Maximize Presupposition! (MP!) (informal) (Heim 1991) Do not use S if there is a presuppositionally stronger $S' \in ALT(S)$.

If (18) \in ALT((19)), an utterance of (19) gives rise to an *implicated* presupposition (Sauerland 2008): (18) is not defined in *c*, and therefore ATOM_@(σ (man_@)) is not believed to be true. Dayal's account of the UP has to assume that *who* in English is semantically plural (despite being morphosyntactically singular).

The puzzle: Dayal's account makes the wrong predictions for languages with *who.SG* and *who.PL*. Potential fixes are independently problematic.

The goal:

- retain Dayal's account for the UP of singular *which*-questions and the anti-singleton inference of plural *which*-questions.
- Accommodate the absence of the UP with *who.SG*.

Analysis

Questions

For concreteness, we assume that *wh*-phrases are existential quantifiers, adopting Fox's (2012) take on Karttunen 1977.

Questions and number

Adopting Sauerland's (2003) account of number, number features are defined for arguments of type e, and therefore apply to the trace of *wh*-movement.

 $\lambda p: \forall x' [(\mathsf{employee}_{@}(x') \land \mathsf{left}_{@}(x')) \to \mathsf{ATOM}_{@}(x')]. \exists x [\mathsf{employee}_{@}(x) \land p = \lambda w.\mathsf{left}_{w}(x)]$ λp $\lambda P.\exists x[employee_{\otimes}(x) \land P(x)] \quad \lambda x: ATOM_{\otimes}(x).p = \lambda w.left_{w}(x)$ which employee@ λx C_O D λw left. SG@

We claim that simplex *wh*-expressions can range over higher-order semantic objects, rather than just members of D_{e} .

(21)
$$\llbracket who \rrbracket = \lambda P_{\sigma} . \exists x [P(x)]$$

 $\sigma \in \Sigma$

(22)
$$\sigma_1 \in \Sigma \text{ iff } \begin{cases} \sigma_1 = \langle e, t \rangle \\ \sigma_1 = \langle \sigma_2, t \rangle & \text{where } \sigma_2 \in \Sigma \end{cases}$$

 $(23) \quad \Sigma = \{ \langle e, t \rangle, \langle \langle e, t \rangle, t \rangle, \langle \langle \langle \langle e, t \rangle, t \rangle, t \rangle, t \rangle, t \rangle, \dots \}$

See Spector (2007, 2008) for related ideas.


```
(24) [[who<sub>Q</sub> left?]] =
```

```
\begin{split} \lambda w. \{\{\mathsf{R}\}\}(\lambda x: \mathsf{ATOM}_{@}(x).\mathsf{left}_{w}(x)), \\ \lambda w. \{\{\mathsf{M}\}\}(\lambda x: \mathsf{ATOM}_{@}(x).\mathsf{left}_{w}(x)), \\ \lambda w. \{\{\mathsf{J}\}\}(\lambda x: \mathsf{ATOM}_{@}(x).\mathsf{left}_{w}(x)), \\ & \textcircled{M}_{w}. \{\{\mathsf{R},\mathsf{M}\}\}(\lambda x: \mathsf{ATOM}_{@}(x).\mathsf{left}_{w}(x)), \\ & \textcircled{M}_{w}. \{\{\mathsf{R},\mathsf{M}\}, \{\mathsf{R} \oplus \mathsf{M}\}\}(\lambda x: \mathsf{ATOM}_{@}(x).\mathsf{left}_{w}(x)), \\ \lambda w. \{\{\mathsf{R},\mathsf{J}\}\}(\lambda x: \mathsf{ATOM}_{@}(x).\mathsf{left}_{w}(x)), \\ \lambda w. \{\{\mathsf{R},\mathsf{J}\}\}(\lambda x: \mathsf{ATOM}_{@}(x).\mathsf{left}_{w}(x)), \\ \lambda w. \{\{\mathsf{R},\mathsf{M},\mathsf{J}\}\}(\lambda x: \mathsf{ATOM}_{@}(x).\mathsf{left}_{w}(x)), \\ \lambda w. \{\{\mathsf{R},\mathsf{M},\mathsf{J}\}\}(\lambda x: \mathsf{ATOM}_{@}(x).\mathsf{left}_{w}(x)), \\ \lambda w. \{\{\mathsf{R},\mathsf{M},\mathsf{J}\}\}(\lambda x: \mathsf{ATOM}_{@}(x).\mathsf{left}_{w}(x)), \\ \ldots \end{split}
```

If in $w_{@}$ both Roy and Moss left, then ① and ② are both *true*, and $\mathfrak{A}(w_{@})([(24)])$ is defined, returning ①. This is because ① asymmetrically entails ②; it is more informative.

We claim that simplex *wh*-expressions are type-flexible because they spell out the structure in ①; polymorphism arises due to the polymorphic domain variable at the core of the *wh*-expression. NP restrictors are however strictly typed as $\langle e, t \rangle$.

(25)
$$\llbracket wh \rrbracket = \lambda P_{\sigma,t} \cdot \lambda Q_{\sigma,t} \cdot \exists x_{\sigma} [P(x) \land Q(x)]$$

We retain Sauerland, Anderssen & Yatsushiro's (2005) account of the anti-singleton inference as a reflex of MP! (see also Sauerland 2008).

To account for the anti-singleton inference associated with *who.PL* in Spanish and other languages just so long as $who_{\langle et,t \rangle}$.SG left? is always in ALT($who_{\langle \sigma,t \rangle}$.PL left?).

Conclusion

The puzzle: Dayal's account makes the wrong predictions for languages with *who.SG* and *who.PL*. Potential fixes are independently problematic.

The goal: Retain Dayal's account for the UP of singular *which*-questions and the anti-singleton inference of plural *which*-questions, and accommodate the absence of the UP with *who.SG*.

The solution:

- *who.PL* and *which.PL* range over both atoms and groups, just as the weak theory of plurality tells us they should.
- The atomicity presupposition associated with SG in conjunction with $\mathfrak A$ gives rise to a UP with which.SG.
- In order to weaken the UP associated with *who.SG*, we claim that *who* can range over higher-order semantic objects as well as individuals (a claim made for independent reasons by Spector 2007, 2008).

References i

- Dayal, Veneeta. 1996. Locality in WH quantification. Red. by Gennaro Chierchia, Pauline Jacobson & Francis J. Pelletier. Vol. 62 (Studies in Linguistics and Philosophy). Dordrecht: Springer Netherlands.
- Fox, Danny. 2012. The semantics of questions. Class notes, MIT seminar.
- Heim, Irene. 1991. Artikel und definitheit. Semantik: ein internationales Handbuch der Zeitgenössischen forschung. 487–535.
- Karttunen, Lauri. 1977. Syntax and semantics of questions. *Linguistics and Philosophy* 1(1). 3–44.
- Link, Godehard. 1983. The logical analysis of plurals and mass terms: a lattice-theoretic approach. In P. Portner and B. H. Partee (ed.), *Formal semantics the essential readings*, 127–147. Blackwell.

- Sauerland, Uli. 2003. A new semantics for number. *Semantics and Linguistic Theory* 13(0). 258–275.
- Sauerland, Uli. 2008. Implicated presuppositions. In *The discourse potential* of underspecified structures, 581–600. Berlin: Mouton de Gruyter.
- Sauerland, Uli, Jan Anderssen & Kazuko Yatsushiro. 2005. The plural is semantically unmarked. In *Linguistic evidence empirical, theoretical and computational perspectives*. Berlin, Boston: De Gruyter.

Questions?

Appendix

Group-denoting expressions compose directly with collective predicates.

(26)
$$\llbracket \text{gather}_w \rrbracket = \lambda x : \neg \text{ATOM}_{@}(x).\text{gather}_w(x)$$

A major advantage of our account is that it allows us to treat simplex *wh*-expressions in English as semantically singular, consistent with their morphosyntactic singularity.

BUT simplex *wh*-expressions *can* compose with collective predicates for many speakers.

- (27) a. Who gathered in the hallway?
 - b. #Which employee gathered in the hallway?

We do not provide a concrete analysis here, but simply observe that many speakers allow a morphosyntactically singular quantificational DP to compose with a collective predicate in the case of *every NP*.

(28) Every employee gathered in the hallway.