
Two souls of disjunction:
Making dynamic semantics (more) explanatory*

Patrick D. Elliott†

www: patrickdelliott.com
Frankfurt Semantics Colloquium

January 17, 2019

1. Introduction

• there are two broad traditions addressing the semantics and prag-
matics of disjunction, with little overlap.

• The scalar implicature literature (Sauerland 2004, a.o.) is con-
cerned with deriving exclusive readings and ignorance inferences,
and the logical environments in which they arise, while retaining
inclusive disjunction as the basic meaning of natural language “or”.

• The literature on dynamic semantics (Heim 1983, Beaver 2001) is
largely concerned with deriving facts concerning presupposition
projection in disjunctive sentences (Karttunen 1973).

• Both approaches to disjunction seem necessary, given the data, but
it is not obvious that the two are even compatible – concretely, the

*This work has previously been presented at an internal ZAS workshop. Special
thanks to Paul Marty, Matthew Mandelkern, and Daniel Rothschild for helpful
discussion.

†handout @ https://patrl.keybase.pub/handouts/frankfurt.pdf

scalar implicature literature takes as its starting point that the ba-
sic meaning of natural language or is inclusive logical disjunction,
whereas dynamic semantics departs from this orthodoxy.

• Relatedly, dynamic semantics has been repeatedly criticized (see,
e.g., Schlenker 2009, 2010) because the dynamic entry for disjunc-
tion can’t be derived from logical disjunction (the same criticism
applies to the other logical connectives).

• In this talk we will ultimately aim to reconcile the pragmatic and
dynamic approaches to disjunction by integrating exhaustification
into a dynamic framework.

• We’ll argue that we can get away with just lifting propositional dis-
junction, once exhaustification enters the picture.

• Relatedly, one of our main goals will be to boost the explana-
tory power of dynamic semantics (wrt. presupposition projection).
We’ll aim to accomplish this by presenting a novel take on dynamic

1

semantics which makes use of the state monad (see, e.g., Charlow
2014).

• In this new fragment, dynamic connectives are not stated as prim-
itives, but rather are derived by type-lifting propositional connec-
tives in a systematic way.

• We’ll present evidence that this move is independently necessary
from facts concerning presupposition in disjunctive sentences,
which the orthodox dynamic approach is ill-equipped to handle.

2. Presupposition projection and disjunction

• Karttunen (1973) observed that in a sentence such as (1-3), the
presupposition in the second disjunct triggered by stopped vaping
(that Paul did vape) is not inherited by the complex disjunctive sen-
tence.

(1) Paul never vaped or Paul stopped vaping.

(2) Either neither Paul nor Sophie have vaped, or Paul stopped vaping.

(3) Either there is no bathroom, or the bathroom is downstairs.

• In order to capture such data, Karttunen proposed the generaliza-
tion in (4) – if the negation of the first disjunct entails the presup-
position of the second disjunct, then it fails to project.

(4) Karttunen’s generalization
Let S be a sentence of the form “A or B”.

a. If JAK presupposes 𝜋 then JSK presupposes 𝜋.

b. If JBK presupposes 𝜋 then JSK presupposes 𝜋, unless ¬ JAK
entails 𝜋.

• The problem: Karttunen’s generalization is too weak. In each case
below, the negation of the first disjunct is too weak to entail the
presupposition of the second.

(5) Either Paul never vaped and he jogged every day, or he stopped
vaping. no presupposition

¬ (¬ 𝑝 ∧ 𝑞) ⊭ 𝑝

(6) Either there is no King of France and the country is in chaos or the
King Of France is in exile. no presupposition

¬ (¬ 𝑝 ∧ 𝑞) ⊭ 𝑝

(7) Either nobody left early or only Josie left early. no presupposition
¬ (¬∃𝑥[𝑃 𝑥]) ⊭ 𝑃 𝑗

• In order to account for this and similar data, we suggest the refine-
ment to Karttunen’s generalization in (8).

• The difference lies in clause (8b), which says that the presupposi-
tion of the second disjunct doesn’t project, just in case it is entailed
by grand conjunction of the negations of each excludable alterna-
tive to the second disjunct.1

1We take the excludable alternatives to a sentence 𝜙 to be those that are logically non-
weaker than JϕK, following e.g., Magri (2009).

2

(8) Let S be a sentence of the form “A or B”.

a. If JAK presupposes 𝜋 then JSK presupposes 𝜋.

b. If JBK presupposes 𝜋 then JSK presupposes 𝜋, unless
⋀

𝜓∈excl B
[¬𝜓] entails 𝜋.

• We assume that in a complex sentence such as “A or B”, A is an
alternative to B, and every sub-constituent of A is an alternative to
B. This falls out straightfowardly from, e.g., Fox & Katzir’s (2011)
structural theory of alternatives.

• The refined generalization in (8) now encompasses the problematic
datapoint in (5), since (a) the first disjunct raises the alternatives
Josie never smoked and Josie jogged every day, and (b) negating both
alternatives entails the presupposition of the second disjunct: that
Josie used to smoke.

• In the very last section of the talk, we’ll sketch an analysis that de-
rives the presupposition projection associatedwith disjunction (so-
called “dynamic disjunction”), from local exhaustification, while
improving on the explanatory power of classical dynamic seman-
tics.

• First we’ll sketch Heim’s dynamic semantics, a theory tailored to
capture the Karttunen’s generalizations for presupposition projec-
tion.

3. Heim’s update semantics

• Here I’ll give a (non-standard) presentation of Heim’s (1983)
propositional dynamic semantics, which aims to give an account of
Karttunen’s generalizations regarding presupposition projection.

• The generalizations pertaining to each of the logical connectives
are given below:

(9) The Heim-Karttunen generalizations

a. If A presupposes 𝜋, then a sentence of the form “not A” pre-
supposes 𝜋.

b. If A presupposes 𝜋 and B presupposes 𝜌, then a sentence of
the form “A and B” presupposes 𝜋, and unless A entails 𝜌, also
presupposes 𝜌.

c. If A presupposes 𝜋 and B presupposes 𝜌, then a sentence of
the form “if A then B” presupposes 𝜋, and unless A entails 𝜌,
also presupposes 𝜌.

d. If A presupposes 𝜋 and B presupposes 𝜌, then a sentence of
the form “A or B” presupposes 𝜋, and unless “not A” entails 𝜌,
also presupposes 𝜌.

• Let’s briefly illustrate some predictions.

(10) Paul didn’t stop vaping. presupposes that Paul vaped

(11) Paul vaped and Paul didn’t stop vaping. presuppositionless

(12) Paul didn’t stop vaping and Paul vaped.
presupposes that Paul vaped

(13) If Paul and Sophie vaped, then Paul would never stop vaping.
presuppositionless

3

(14) Either Paul never vaped, or Paul stopped vaping.
presuppositionless

• I’ll take the Heim-Karttunen generalizations to be essentially cor-
rect, modulo the refinement to the disjunction generalization dis-
cussed in the previous section. Let’s now see how Heim’s dynamic
semantics aims to derive these generalizations.

• Sentences express updates of the common ground. The common
ground is simply modelled as a set of possible worlds, i.e., a propo-
sition. This reifies, in the semantics, Stalnaker’s (1976) treatment
of assertion.

• I’ll define an operator 𝔸 (assert) which takes us from propositions
(of type s → t) to updates (type { s } → { s }).2

• Asserting a proposition 𝜙 is a function from the context 𝑐 to an
updated context, resulting from intersecting 𝑐 and the set charac-
terized by 𝜙.

(15) Total assertion operator (def.)
𝔸 𝜙 ≔ 𝜆𝑐 . 𝑐 ∩ { 𝑤 ∣ 𝜙 𝑤 } (s → t) → { s } → { s }

(16) 𝔸 JPaul vapesK = 𝜆𝑐 . 𝑐 ∩ { 𝑤 ∣ vapes𝑤 p } { s } → { s }

• Within a Heimian framework, presuppositions place requirements
on the common ground – concretely, presuppositions must be re-
dundant (i.e., entailed by) the common ground. If they are not, the
update is undefined.

2I’ll flip-flop between talking about propositions as functions from worlds to truth
values (type s → t), and sets of worlds (type { s }). Most of the time, we can think
of sets as being equivalent to their characteristic functions, but there are a couple
of places in which the difference will become important, e.g., when we talk about
presuppositional propositions.

• We can redefine our assertion operator as a function from a partial
proposition to a partial update – this makes the relation between a
trivalent theory of presuppositions and a dynamic treatment espe-
cially transparent.

(17) Partial assertion operator (def.)
𝔸 𝜙 ≔ 𝜆𝑐 ∶ 𝑐 ⊆ dom 𝜙 . 𝑐 ∩ { 𝑤 ∣ 𝜙 𝑤 }

(18) JPaul stopped vapingK = 𝜆𝑤 ∶ vaped𝑤 p . ¬vapes𝑤 p

(19) dom JPaul stopped vapingK = { 𝑤 ∣ vaped𝑤 p }

(20) 𝔸 JPaul stopped vapingK = 𝜆𝑐 ∶ 𝑐 ⊆ { 𝑤 ∣ vaped𝑤 p }
 . 𝑐 ∩ { 𝑤 ∣ ¬vapes𝑤 p }

• So, a sentence with a presupposition 𝜋 is associated with an up-
date on the common ground 𝑐, which is defined just in case 𝜋 is
redundant in (i.e., is entailed by) 𝑐.

• The logical connectives are treated as functions from updates to up-
dates. In each case we give the formal definition of the function,
and an informal algorithmic implementation of the function.

(21) Heimian negation

a. ¬ 𝑢 ≔ 𝜆𝑐 . 𝑐 ∖ (𝑢 𝑐)

b. Take the result of updating 𝑐 with 𝑢, and subtract the result
from 𝑐.

4

(22) Heimian conjunction

a. 𝑢 ∧ 𝑣 ≔ 𝜆𝑐 . (𝑣 ∘ 𝑢) 𝑐

b. First update 𝑐 with 𝑢, then update the result with 𝑣.

(23) Heimian implication

a. if 𝑢 then 𝑣 ≔ (¬ 𝑢 𝑐) ∪ (𝑢 ∧ 𝑣) 𝑐

b. First, update 𝑐 with 𝑢, and subtract the result from 𝑐, and
store the result as 𝑐′. Next, update 𝑐 with 𝑢, and then update
the result with 𝑣, storing the result as 𝑐″. Now, take the union
of 𝑐′ and 𝑐″.

(24) Heimian disjunction

a. 𝑢 ∨ 𝑣 ≔ 𝜆𝑐 . 𝑢 𝑐 ∪ 𝑣 (¬ 𝑢 𝑐)

b. First, update 𝑐 with 𝑢, retaining the result 𝑐′. Then, update
𝑐 with 𝑢, subtract the result from 𝑐, and update this with 𝑣,
retaining the result 𝑐″. Finally, take the union of 𝑐′ and 𝑐″.

• The way the connectives are defined is tailored to capture the Kart-
tunen/Heim rules presupposition projection. Let’s work through
some examples in more detail.3

• Presuppositions project out of negation:

(25) Paul didn’t stop vaping. presupposes Paul vaped

3Crucially, we assume that, if at any stage the result of some sub-update is undefined,
the entire update is undefined.

(26) a. 𝔸 JPaul stopped vapingK = 𝜆𝑐 ∶ 𝑐 ⊆ { 𝑤 ∣ vaped𝑤 p }
 . 𝑐 ∩ { 𝑤 ∣ ¬ vapes𝑤 p }

b. ¬ (26𝑎) = 𝜆𝑐 ∶ 𝑐 ⊆ { 𝑤 ∣ vaped𝑤 𝑝 } . 𝑐 ∖ (𝑐 ∩ { 𝑤 ∣ vapes𝑤 p })

• A conjunctive LF 𝑢 ∧ 𝑣 is predicted to be defined iff the common
ground 𝑐 updated with 𝑢 entails the presupposition of 𝑣.

(27) Paul vaped and Paul stopped vaping. no presupposition

(28) a. 𝔸 JPaul vapedK = 𝜆𝑐 . 𝑐 ∩ { 𝑤 ∣ vaped𝑤 p }

b. 𝔸 JPaul stopped vapingK = 𝜆𝑐 ∶ 𝑐 ⊆ { 𝑤 ∣ vaped𝑤 p }
 . 𝑐 ∩ { 𝑤 ∣ ¬ vapes𝑤 p }

c. (28𝑎)∧(28𝑏) = 𝜆𝑐 ∶ (𝑐 ∩ { 𝑤 ∣ vaped𝑤 p }) ⊆ { 𝑤 ∣ vaped𝑤 𝑝 }
 . (𝑐 ∩ { 𝑤 ∣ vaped𝑤 p }) ∩ { 𝑤 ∣ ¬ vapes𝑤 p }

(29) Paul stopped vaping and Paul vaped. presupposes Paul vaped

(30) (28𝑏) ∧ (28𝑎) = 𝜆𝑐 ∶ 𝑐 ⊆ { 𝑤 ∣ vaped𝑤 𝑝 }
 . (𝑐 ∩ { 𝑤 ∣ ¬ vapes𝑤 p }) ∩ { 𝑤 ∣ vaped𝑤 p }

• Moving on to disjunction, a disjunctive LF is predicted to be de-
fined iff the common ground entails the presupposition of the first
disjunct and the common ground updated with the negation of the
first disjunct entails the presupposition of the second disjunct.

(31) Paul never vaped or Paul stopped vaping.
no presupposition

5

(32) a. ¬ 𝔸 JPaul vapedK = 𝜆𝑐 . 𝑐 ∖ (𝑐 ∩ { 𝑤 ∣ vaped𝑤 p })

b. 𝔸 JPaul stopped vapingK = 𝜆𝑐 ∶ 𝑐 ⊆ { 𝑤 ∣ vaped𝑤 p }
 . 𝑐 ∩ { 𝑤 ∣ ¬ vapes𝑤 p }

c. (32𝑎) ∨ (32𝑏)
= 𝜆𝑐 ∶ (𝑐 ∩ { 𝑤 ∣ vaped𝑤 p }) ⊆ { 𝑤 ∣ vaped𝑤 p }

 . (𝑐 ∖ (𝑐 ∩ { 𝑤 ∣ vaped𝑤 p }))
∪ ((𝑐 ∩ { 𝑤 ∣ vaped𝑤 p }) ∩ { 𝑤 ∣ ¬ vapes𝑤 p })

3.1. Criticism of Dynamic Semantics

• It’s been repeatedly pointed out (see, e.g., Schlenker 2009, 2010)
that it’s possible to define “deviant” dynamic connectives which
are truth-conditionally adequate, but nonetheless get the presup-
position projection facts wrong.4

• An extremely simple example is reverse dynamic conjunction.

(33) 𝑢 ⩟ 𝑣 ≔ 𝜆𝑐 . (𝑢 ∘ 𝑣) 𝑐

• Since the order in which the common ground 𝑐 gets updated is re-
versed, this entry predicts that Paul stopped vaping and Paul vaped
should be presuppositionless, whereasPaul vaped and Paul stopped
vaping should presuppose that Paul vaped.

• In the next section I’ll lay out a compositional update semantics
that addresses this criticism by avoiding building the update logic
into the meaning of the connectives.

4See Rothschild (2011) for detailed discussion of this point.

4. A state-monadic update semantics

• In this section I’ll attempt to address criticisms of dynamic seman-
tics by constructing a compositional update semantics, where the
connectives receive their familiar, logical entries.

• We’ll do this by constucting a state-monadic fragment, building on
Charlow’s (2014) dynamic semantics for anaphora.

• We’ll factor the update logic out into a minimal inventory of type
shifters. This will make the relationship between the update logic
and the underlying fragment especially transparent.

4.1. An aside on side-effects and monads

• Here, I’ll be following existingwork by, e.g., Shan (2002), Asudeh&
Giorgolo (2016), and especially Charlow (2014), by using monads
to extend a pure, Montagovian fragment.5

• Monads are a tool developed by computer scientists to model so-
called side-effects in pure functional programming languages such
as Haskell.

• What exactly is a pure functional programming language? As for-
mal semanticists, we’re already familiar with one such language –
the simply typed lambda calculus.

• The functional part comes from the fact that programs are written
as mathematical functions. Purity refers to the idea that computa-
tion can be modelled simply as function-argument application.

• Side-effects refer to any result of a computation that goes beyond
function argument application.

5Note, that’s it’s not crucial to understand what a monad is in order to understand,
the formal fragment, but the intuition behind monads will be helpful.

6

• Imagine a program that takes two integers, computes their sum,
and prints the result as a string. The program returns a numerical
value as the result of applying the addition function to its two argu-
ments, but it returns an additional result which can’t be reduced to
function-argument application – namely, a printed string. This is
illustrated in (34).

(34)

3

reduce

1 + 2

apply

1 𝜆𝑚 . 𝑚 + 2

apply

𝜆𝑛 . 𝜆𝑚 . 𝑚 + 𝑛 2

⇒ print “3”

• The intuition we’re going to pursue is that an update to the com-
mon ground is a side-effect of pure-linguistic computation, and
we’re going to use monads (specifically, the state monad) to model
this in a fully compositional way. The intuitive idea is illustrated
in (35)

(35)

𝜆𝑤 . vapes𝑤 p

apply

p 𝜆𝑥 . 𝜆𝑤 . vapes𝑤 𝑥

⇒ 𝑐 ∩ { 𝑤 ∣ vapes𝑤 p }

4.2. The formal fragment

• First, I’ll define a type-constructor for updates; an update is a func-
tion from a context set, to a pair consisting of an ordinary value
and a potentially updated context set.6

(36) U a ≔ { s } → (a ∗ { s })

• We now define an injection function 𝜌 to lift ordinary values into
the update-semantic space. We furthermore define a binary func-
tion (⊛), which performs application in the update-semantic space.
The type constructor U, together with these two functions, consti-
tutes an instantiation of the State monad.

(37) a. 𝑎𝜌 ≔ 𝜆𝑐 . ⟨𝑎, 𝑐⟩ a → U a

b. 𝑚 ⊛ 𝑛
≔ 𝜆𝑐 . ⟨A 𝑥 𝑦, 𝑐″⟩

 ⟨𝑥, 𝑐′⟩ ≔ 𝑚 𝑐
 ⟨𝑦, 𝑐″⟩ ≔ 𝑛 𝑐′

U (a → b) → U a
U a → U (a → b)

} → U b

6I use (∗) here as the type constructor for pairs, and later I use ⟨.⟩ as the corresponding
data constructor for pairs.

7

• Let’s dwell for a moment on the definition of (⊛):

– It takes two updates 𝑚 and 𝑛 as its inputs.

– The input context set 𝑐 is first fed into 𝑚, returning a poten-
tially updated context 𝑐′.

– 𝑐′ then gets fed into 𝑛, finally returning a potentially updated
context 𝑐″.

– Theordinary values contained within the two updates simply
undergo function application.

• We now have everything we need to compose updates while keep-
ing track of a potentially updated context, but as it stands, nothing
interesting ever happens. Applying 𝜌 to ordinary semantic values
results in vacuous updates, e.g. for Paul vapes:

(38) (Paul vapes)𝜌 = 𝜆𝑐 . ⟨𝜆𝑤 . vapes𝑤 p, 𝑐⟩ U (S t)

• In order to insert some dynamic action into our fragment we’ll (re-
)define an assert operator.

(39) 𝔸 𝑚 ≔ 𝜆𝑐 . ⟨𝑝, 𝑐′ ∩ 𝑝⟩
for ⟨𝑝, 𝑐′⟩ ≔ 𝑚 𝑐

U (S t) → U (S t)

(40) 𝔸 (Paul vapes)𝜌 = 𝜆𝑐 . ⟨
𝜆𝑤 . vapes𝑤 p,
𝑐 ∩ { 𝑤 ∣ vapes𝑤 p }

⟩

• Now we can illustrate how state-monadic composition updates
the common ground from left-to-right (note that we’re just lifting
static conjunction here).

(41) Hubert smokes and Paul vapes. LF in (42)

• In our fragment, ordinary one-place predicates are of type e → S t,
i.e., functions from individuals to propositions.

• We take presuppositional one-place predicates on the other hand
to be of type e → U (S t), i.e., functions from individuals to (partial)
propositional updates.

• Unlike ordinary predicates, presuppositional predicates place re-
quirements on the input context.

• The entry for stop smoking in (43) for example, takes an individual
𝑥 and an input context 𝑐, and returns a proposition plus an output
context just in case the input context entails that x smoked.

(43) stopSmoking = 𝜆𝑥 . 𝜆𝑐 ∶ 𝑐 ⊆ { 𝑤 ∣ smoked𝑤 𝑥 }
 . ⟨𝜆𝑤 . ¬ smoked𝑤 𝑥, 𝑐⟩

e → U (S t)

• It’s of course possible to state themeanings of theHeimiandynamic
connectives directly in our fragment, but this hardly constitutes a
conceptual improvement over vanilla dynamic semantics.

• Instead, we’re going define a function that systematically lifts static,
propositional connectives to their dynamic counterparts. As we’ll
see, this will get the right results for negation, conjunction, and
implication, but not for disjunction.

• For readability, we’re going to provide a set-theoretic formulation
of the propositional connectives.

• For technical reasons, each connective comes with an additional
contextual domain parameter – in a familiar static setting, this will
always just be saturated by the set of all possible worlds.

8

(42) 𝜆𝑐 . ⟨
𝜆𝑤 . smokes𝑤 h ∧ vapes𝑤 p,
(𝑐 ∩ { 𝑤 ∣ smokes𝑤 h }) ∩ { 𝑤 ∣ vapes𝑤 p }

⟩

⊛

𝜆𝑐 . ⟨
𝜆𝑤 . smokes𝑤 h,
𝑐 ∩ { 𝑤 ∣ smokes𝑤 h }

⟩

𝔸 (Hubert smokes)𝜌

𝜆𝑐 . ⟨
𝜆𝑞 . 𝜆𝑤 . 𝑞 𝑤 ∧ vapes𝑤 p,
𝑐 ∩ { 𝑤 ∣ vapes𝑤 p }

⟩

⊛

𝜆𝑐 . ⟨
𝜆𝑝 . 𝜆𝑞 . 𝜆𝑤 . 𝑞 𝑤 ∧ 𝑝 𝑤,
𝑐

⟩

and𝜌

𝜆𝑐 . ⟨
𝜆𝑤 . vapes𝑤 p,
𝑐 ∩ { 𝑤 ∣ vapes𝑤 p }

⟩

𝔸 (Paul vapes)𝜌

(44) a. not𝑝 ≔ 𝜆𝑝 . 𝜆𝑞 . 𝑞 ∖ 𝑝 { s } → { s } → { s }

b. and𝑝 ≔ 𝜆𝑞 . 𝜆𝑝 . 𝜆𝑟 . 𝑟 ∩ 𝑝 ∩ 𝑞 { s } → { s } → { s } → { s }

c. if...then𝑝 ≔ 𝜆𝑞 . 𝜆𝑝 . 𝜆𝑟 .(𝑟 ∖ 𝑝) ∪ 𝑞 { s } → { s } → { s } → { s }

d. or𝑝 ≔ 𝜆𝑞 . 𝜆𝑝 . 𝜆𝑟 . 𝑟 ∩ (𝑝 ∪ 𝑞) { s } → { s } → { s } → { s }

• Now we can define our dynamic lifter function. Again, for tech-
nical reasons I’ll give two functions – one to lift a unary proposi-
tional connective and one to lift a binary propositional connective.
It’s possible to give a uniform definition, but it’s simpler to write
this way.

(45) d-lift1 𝑓𝑚 ≔ 𝜆𝑐 . ⟨
𝑓 𝑝 { 𝑤 ∣ 𝑤 ∈ 𝐷s } ,
𝑓 𝑐′𝑐

⟩

for ⟨𝑝, 𝑐′⟩ ≔ 𝑚 𝑐

(46) 𝑚 (d-lift2 𝑓) 𝑛 ≔ 𝜆𝑐 . ⟨
𝑓 𝑞 𝑝 { 𝑤 ∣ 𝑤 ∈ 𝐷s }
𝑓 𝑐″ 𝑐′ 𝑐

⟩

⟨𝑝, 𝑐′⟩ ≔ 𝑚 𝑐
⟨𝑞, 𝑐″⟩ ≔ 𝑛 𝑐′

• In informal terms, the propositional connective 𝑓 is applied to the
ordinary value, in which case its inner-argument is simply the set
of all possible worlds, and it is also applied to the updated common
ground, in which case its inner-argument is the input context 𝑐.

9

• Applying d-lift to each of the propositional connectives (except dis-
junction) gives us...the Heimian dynamic connectives! (You can
verify this for yourselves).7

(47) a. d-lift1 not𝑝 = 𝜆𝑚 . 𝜆𝑐 . ⟨
{ 𝑤 ∣ 𝑤 ∈ 𝐷s } ∖ 𝑝,
𝑐 ∖ 𝑐′ ⟩

for ⟨𝑝, 𝑐′⟩ ≔ 𝑚 𝑐

b. d-lift2 and𝑝 = 𝜆𝑛 . 𝜆𝑚 . 𝜆𝑐 . ⟨
{ 𝑤 ∣ 𝑤 ∈ 𝐷s } ∩ 𝑝 ∩ 𝑞,
(𝑐 ∩ 𝑐′) ∩ 𝑐″ ⟩

⟨𝑝, 𝑐′⟩ ≔ 𝑚 𝑐
⟨𝑞, 𝑐″⟩ ≔ 𝑛𝑐′

c. d-lift2 if..then𝑝 = 𝜆𝑛 . 𝜆𝑚 . 𝜆𝑐 . ⟨
{ 𝑤 ∣ 𝑤 ∈ 𝐷s } ∖ 𝑝 ∪ 𝑞,
(𝑐 ∖ 𝑐′) ∪ 𝑐″ ⟩

⟨𝑝, 𝑐′⟩ ≔ 𝑚 𝑐
⟨𝑞, 𝑐″⟩ ≔ 𝑛𝑐′

• Let’s briefly illustrate the predictions we make for presupposition
projection – see (49).

(48) If Paul and Sophie vaped, then Paul stopped vaping.
no presupposition

• The predictions wemake for disjunction are deviant however – let’s
first consider the Heim rule for disjunction recast within our new
framework.

7A small proviso is necessary here – we must assume that every propositional node
is first subjected to the Stalnakerian assert operator 𝔸.

(50) or𝑑 = 𝜆𝑛 . 𝜆𝑚 . 𝜆𝑐 . ⟨
{ 𝑤 ∣ 𝑤 ∈ 𝐷s } ∩ (𝑝 ∪ 𝑞),
𝑐 ∩ (𝑐′ ∪ 𝑐″)

⟩

⟨𝑝, 𝑐′⟩ ≔ 𝑚 𝑐
⟨𝑞, 𝑐″⟩ ≔ 𝑛 (𝑐 ∖ 𝑐′)

• Our d-lift rule, however, predicts that the local context of the sec-
ond disjunct should just be the first disjunct.

(51) d-lift2 or𝑝 = 𝜆𝑛 . 𝜆𝑚 . 𝜆𝑐 . ⟨
{ 𝑤 ∣ 𝑤 ∈ 𝐷s } ∩ (𝑝 ∪ 𝑞),
𝑐 ∩ (𝑐′ ∪ 𝑐″)

⟩

⟨𝑝, 𝑐′⟩ ≔ 𝑚 𝑐
⟨𝑞, 𝑐″⟩ ≔ 𝑛 𝑐′

• Lifted propositional or thereforemakes deviant predictions for pre-
supposition projection.

(52) #Either Paul vaped or Paul stopped vaping.
predicted to be presuppositionless

4.3. Enter exh

• I’d like to suggest that the predictionswemake for disjunction aren’t
as bad as they seem– the oddprojection behaviourwe observewith
disjunction can be blamed on the presence of an exhaustification
operator exh.

• How should we define exh in a semantics with dynamic updates?
I’d like to suggest the entry below:

10

(49) 𝜆𝑐 ∶ (𝑐 ∩ { 𝑤 ∣ vaped𝑤 p ∧ vaped𝑤 s }) ⊆ { 𝑤 ∣ vaped𝑤 p } . ⟨
{ 𝑤 ∣ 𝑤 ∈ 𝐷s } ∖ { 𝑤 ∣ vaped𝑤 p ∧ vaped𝑤 s } ∪ { 𝑤 ∣ ¬ vapes𝑤 p } ,
𝑐 ∖ (𝑐 ∩ { 𝑤 ∣ vaped𝑤 p ∧ vaped𝑤 s })
∪ (𝑐 ∩ { 𝑤 ∣ vaped𝑤 p ∧ vaped𝑤 s } ∩ { 𝑤 ∣ ¬ vapes𝑤 p })

⟩

𝜆𝑐 . ⟨
𝜆𝑤 . vaped𝑤 p ∧ vaped𝑤 s
𝑐 ∩ { 𝑤 ∣ vaped𝑤 p ∧ vaped𝑤 s }

⟩

𝔸 (Paul and Sophie vaped𝜌)

...

d-lift2 if...then𝑝 𝜆𝑐 ∶ 𝑐 ⊆ { 𝑤 ∣ vaped𝑤 p } . ⟨
𝜆𝑤 . ¬ vapes𝑤 p,
𝑐 ∩ { 𝑤 ∣ ¬ vapes𝑤 p }

⟩

𝔸 Paul stopped vaping.

(53) exh 𝑚 ≔ 𝜆𝑐 . ⟨𝑝, 𝑐′⟩
⟨𝑝, 𝑐′⟩‵ ≔ 𝑚 (𝑐 ∩ ⋀

𝑞∈excl 𝑝
{ ¬𝑞 })

• Quasi-formally:

– exh takes an update 𝑚 as its prejacent, and updates the input
context 𝑐 with the implicatures of its prejacent, resulting in
an updated context 𝑐′.8

– exh updates the context 𝑐′ with its prejacent.
– In the ordinary dimension, exh just returns its prejacent.

• Since the implicatures of the prejacent update the context before
the resulting context is updated with the prejacent, the expectation

8I ignore innocent exclusion here for convenience, and assuming that exh simply
negates logically non-weaker alternatives.

is that the implicatures associated with 𝑚 can locally satisfy the
presupposition associated with 𝑚.

• We claim that this is exactly what happens with disjunction. Re-
garding alternatives, we must simply assume that in a sentence of
the form “P or Q”, P is an alternative to Q. This follows from, e.g.,
Fox & Katzir’s (2011) algorithm for computing alternatives.

5. Conclusion

• We’ve argued that the Heim/Karttunen projection rule for disjunc-
tion is too weak.

• Conceptually, we pointed out that the relation between disjunction
in a Gricean world and disjunction in a Heimian world is unclear.

• Finally, we argued that once we incorporate exhaustification into
a compositional dynamic framework, we end up with (a) superior

11

(54) Paul never vaped or Paul stopped vaping.

(55) 𝜆𝑐 . ⟨
𝜆𝑤 . ¬ vaped𝑤 p ∨ ¬ vapes𝑤 p,
(𝑐 ∩ { 𝑤 ∣ ¬ vaped𝑤 p }) ∪ ((𝑐 ∩ { 𝑤 ∣ vaped𝑤 p }) ∩ { 𝑤 ∣ ¬ vapes𝑤 p })

⟩

𝜆𝑐 . ⟨
𝜆𝑤 .¬ vaped𝑤 p,
𝑐 ∩ { 𝑤 ∣ ¬ vaped𝑤 p }

⟩

𝔸 (Paul never vaped)𝜌

...

or 𝜆𝑐 .
⎧
⎨
⎩

⟨
𝜆𝑤 . ¬ vapes𝑤 p,
(𝑐 ∩ { 𝑤 ∣ vaped𝑤 p }) ∩ { 𝑤 ∣ ¬ vapes𝑤 p }

⟩ ⊤

♯ otherwise

exh
Paul never vaped
∈ alt (Paul stopped vaping)

𝜆𝑐 .
⎧
⎨
⎩

⟨
𝜆𝑤 . ¬ vapes𝑤 p,
𝑐 ∩ { 𝑤 ∣ ¬ vapes𝑤 p }

⟩ 𝑐 ⊆ { 𝑤 ∣ vaped𝑤 p }

♯ otherwise

𝔸 (Paul stopped vaping)𝜌

empirical results, and (b) a more explanatory account of presuppo-
sition projection than classical dynamic semantics.

References

Asudeh, Ash & Gianluca Giorgolo. 2016. Perspectives. Semantics and
Pragmatics 9.

Beaver, David I. 2001. Presupposition and assertion in dynamic semantics
(Studies in logic, language, and information). Stanford, California:
CSLI. 314 pp.

Charlow, Simon. 2014. On the semantics of exceptional scope.
Fox, Danny & Roni Katzir. 2011. On the characterization of alternatives.

Natural Language Semantics 19(1). 87–107.
Heim, Irene. 1983. On the projection problem for presuppositions. In

Proceedings of WCCFL 2, 114–125. Stanford University.
Karttunen, Lauri. 1973. Presuppositions of compound sentences. Lin-

guistic Inquiry 4(2). 169–193.
Magri, Giorgio. 2009. A theory of individual-level predicates based on

blind mandatory implicatures. constraint promotion for optimality
theory. Massachussetts Institute of Technology dissertation.

12

Rothschild, Daniel. 2011. Explaining presupposition projection with dy-
namic semantics. Semantics and Pragmatics 4(0). 1–43.

Sauerland, Uli. 2004. Scalar implicatures in complex sentences. Linguis-
tics and Philosophy 27(3). 367–391.

Schlenker, Philippe. 2009. Local contexts. Semantics and Pragmatics 2.
Schlenker, Philippe. 2010. Local contexts and localmeanings. Philosoph-

ical Studies: An International Journal for Philosophy in the Analytic
Tradition 151(1). 115–142.

Shan, Chung-chieh. 2002. Monads for natural language semantics.
arXiv:cs/0205026.

Stalnaker, Robert. 1976. Propositions. In A. F. MacKay & D. D. Merrill
(eds.), 79–91. New Haven: Yale University Press.

Walsh, Clare R. & P. N. Johnson-Laird. 2004. Co-reference and reason-
ing. Memory & Cognition 32(1). 96–106.

A. Illusory inferences

Walsh & Johnson-Laird (2004) found that inference patterns such as
those exemplified in (56) are overwhelming accepted, despite not being
classically valid.

(56) a. 𝑃1: Either Nathan is drinking coffee and he is listening to the
radio, or Henning is watching TV.

b. 𝑃2: Nathan is drinking coffee
c. 𝐶: Nathan is listening to the radio.

We schematize the general inference pattern in (57):

(57) a. 𝑃1 ∶ (𝜙 ∧ 𝜓) ∨ 𝜋
b. 𝑃2 ∶ 𝜙
c. 𝐶 ∶ 𝜓

If the second disjunct is enriched with the negation of each alternative
to the first disjunct, the resulting stengthened meaning is (𝜙 ∧ 𝜓) ∨ (𝜋 ∧
¬𝜙 ∧ ¬𝜓). Upon hearing 𝜙 therefore, the hearer can conclude that they
are in a world in which 𝜓 is also true.

B. Implementation

• You can find an implementation of the formal fragment in Haskell
at https://github.com/patrl/monadicHeim. It makes use of
the mtl and containers libraries.

• The type of an updatemakes use of the StateTmonad transformer
from the mtl library. The Maybemonad is used to explicitly handle
partiality.

type U = StateT (Set S) Maybe

13

	Introduction
	Presupposition projection and disjunction
	Heim's update semantics
	Criticism of Dynamic Semantics

	A state-monadic update semantics
	An aside on side-effects and monads
	The formal fragment
	Enter exh

	Conclusion
	Illusory inferences
	Implementation

