
Fuck compositionality

Patrick D. Elliott

March 7, 2019 – Emo2019

ZAS https://patrickdelliott.com

https://patrickdelliott.com

Introduction

Preliminaries

• The goal: to argue for a particular way of integrating expressive
content into our existing compositional regime, using an extension of
Charlow’s (2014) monadic grammar.

• I’ll claim that expressive adjectives such as fucking take scope – they
give rise to non-local readings subject to syntactic restrictions, just
like other scope-takers. I’ll model this in the context of a pervasively
continuized grammar.

• I’ll ultimately suggest that once we integrate expressive content – via
the Writer monad – into a grammar with the resources to handle
indeterminacy, scope, and binding, the distinctive way in which
expressive adjectives interact familiar logical operators falls out
naturally.

1

The general framework: Meaning as computation

• Charlow’s framework is one according to which semantic
composition is computation – modelled as function-argument
application. See also: Shan (2002b), Elliott (2019).

• Functional programmers have developed sophisticated techniques
for integrating those aspects of programs that seem
non-compositional in a purely compositional way – e.g., state
sensitivity, indeterminacy.

• Monads are one such method. In the following, we’ll be using
monads to model various aspects of meaning. They aren’t anything
scary – just a type constructor and two type-shifters which together
obey a particular set of laws.

2

Roadmap

• Expressive adjectives, very briefly.

• Using Writer to model expressive content.

• Non-local readings of expressive adjectives.

• Using continuations to model the scope of expressive adjectives.

• Indeterminacy, indefinites, and expressivity.

• Quantification and expressivity.

3

Expressive adjectives

(1) “Fucking Ollie!? He’s a fucking knitted scarf that twat. He’s a fucking
balaclava.” TheThick of It, BBC

(2) “You shitting idiot.” Touching the Void, David Greig

(3) Die
They

wollen
want

eine
a

verfickte
fucking

unterbezahlte
underpaid

Putzfrau
cleaning-lady

einstellen,
hire,

nur
only

weil
because

sie
they

“keine Zeit”
“no time”

zum
to

Putzen
clean

haben.
have.

“They want to hire a fucking unpaid cleaning lady, just because they
have “no time” to clean” twitter

4

Expressive adjectives ii

• At a broad level of abstraction (see McCready 2012 for important
exceptions), Expressive Adjectives (EAs) convey a negative expressive
attitude towards some entity, be it an individual, a kind or something
like a state of affairs.

(4) The fucking cat is being affectionate for once. 𝜄x[cat x]

• It’s important to remember that is just a placeholder for a
fully-fledged semantics; How exactly to cash out is an interesting
and important question, but not one I’ll be concerned with here.

• Rather, I’m going to be concerned with how expressions which
contribute expressive side-effects interact with other aspects of our
compositional regime.

5

TheWriter monad

Writer

Writer is often used to log data in tandem with performing ordinary
computations.

An example of where we might want to use Writer is, e.g., to define a
fancy version of addition that writes to a log (represented as a string)
whether the result is even or odd.

• 2 + 2
Result: 4 ⇝ “The result is even.”

• 4 + 1
Result: 5 ⇝ “The result is even. The result is odd.”

6

Writer ii

How does Writer accomplish this?

It enriches values with an additional dimension (sound familiar?) – let’s
call it the log for now. Here is the writer type-constructor:

(5) Wb a ≔ (a, b)

Now we can define fancy addition in terms of Writer. It’s of type
(Int, String) → (Int, String) → (Int, String).

(+) ≔ 𝜆(n, s) . 𝜆(m, s′) .
⎛
⎜⎜⎜
⎝

n + m, s ⧺ s′ ⧺
if even n + m

then “the result is even”

else “the result is odd”

⎞
⎟⎟⎟
⎠

7

Writer iii

So, (+) takes two fancy integers of type WString Int, and returns another
fancy integer.

This begs the question, what if the two integers we want to add are
non-fancy, i.e., there is no existing log information? We need to define a
way of taking a normal integer, and turning it into a trivial fancy integer –
i.e., one with an empty log. We call such a function from an ordinary
value to a trivial fancy value return:

(6) Return: n𝜂 ≔ (n, “”)

We can also lift functions over normal integers into the fancy dimension
with 𝜂:

(7) (𝜆n . n − 1)𝜂 = (𝜆n . n − 1, “”)
8

Writer iv

Finally, we can define a function to perform a computation while
sequencing fancy side-effects. We call such a function bind.

(8) Bind: (n, l) ≫= k ≔ (f n, l ⧺ l′) where (f, l′) ≔ k n

(6, “the result is odd”)
⊛

...

≫= (7, “the result is odd”)

4𝜂 ...

+ 3𝜂

𝜆n . (n − 1, “”)

𝜆n ...

𝜂 ...

n − 1 9

Writer v

• Writer, as characterized, is a triple consisting of a type-constructor, a
unary operation which we call return, and a binary operation which
we call bind: ⟨M, 𝜂, ≫=⟩. Together, just so long as they obey certain
laws, this constitutes a monad.

• I won’t go through the monad laws here – they ensure that monads
are well-behaved in certain important ways.

• In the context of linguistic semantics, we can think of Monads and
related concepts as theories of possible type shifters.

10

An aside on monoids

• Writer comes with the requirement that b in Wb has a Monoid
instance.

• Similarly to a monad, monoids are triples consisting of a
type-constructor, as well as a value and an operation – ∅ and ⧺.

• Like monads, monoids must obey two laws, which are simple
enough to introduce here:

identity

⏞⎴⎴⏞⎴⎴⏞p ⧺ ∅ = p
associativity

⏞⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⏞(p ⧺ q) ⧺ r = p ⧺ (q ⧺ r)

• It is important that the log type has a monoid instance otherwise
there is no way of glomping together log values without potentially
losing information; ∅ provides the log for a trivially fancy value.

11

ExpressiveWriter

Multi-dimensionality via Writer

• Recall that we described the Writer monad informally as way of
adding an additional dimension of meaning.

• In the literature on expressives, a common strategy has been to
adopt a multi-dimensional semantics (see, e.g., McCready 2010).

• Building on Giorgolo & Asudeh (2012), Charlow (2015), we’re going
to take this parallel and run with it.

• We’re going to model expressive content as a separate dimension via
Writer – as we’ll see, the projective nature and non-interaction of
expressive content just falls out from this perspective.

12

Multi-dimensionality via Writer ii

Aping Potts, we use (∙) to separate ordinary semantic values from
expressive content – formally, this is just sugar for a pair constructor. t is a
stand-in for your favourite propositional type.

(9) W a ≔ a ∙ t

(10) Return: x𝜂 ≔ x ∙ ⊤ a → W a

(11) Bind: (x ∙ p) ≫= k ≔ y ∙ p ∧ q

where y ∙ q ≔ k x W a → (a → W b) → W b

13

Multi-dimensionality via Writer iii

We’ll also provide an Apply function for convenience – this can be
defined in terms of Return and Sequence.

(12) Apply: (x ∙ p) ⊛ (y ∙ q) ≔ A x y ∙ p ∧ q

W a → W (a → b) → W b

Apply just composes a fancy function with its fancy argument, while
sequencing the side-effects associated with each.

14

The propositional conjunction monoid

t makes a suitable “log” type for Writer, since ⟨t, ∧, ⊤⟩ is a monoid.

⊤ (the tautology) is the identity for the propositional conjunction
monoid...

(13) ⊤ ∧ p = p

...and propositional conjunction is associative...

(14) (p ∧ q) ∧ r = p ∧ (q ∧ r)

Trivially fancy values receive ⊤ as their expressive content.

Associativity ensures that the expressive content of distinct constituents
can be glomped together in a way that results in no loss of information.

15

A writer-monadic analysis of expressive adjectives

A salient reading of (15) conveys the speaker’s negative attitude towards
Lou.

(15) Fucking Lou is being affectionate for once.

In order to account for this, we’ll adopt a lexical entry for fucking which
takes a fancy x, and bumps a negative attitude towards x into the
expressive dimension.

(16) fucking (x ∙ p) ≔ (x ∙ p ∧ x) W e → W e

16

A writer-monadic analysis of expressive adjectives ii

Composition proceeds via Writer’s return (𝜂) and apply (⊛) operators.

affectionate l ∙ l
⊛

l ∙ l

fucking l ∙ ⊤
Lou𝜂

𝜆x . affectionate x ∙ ⊤

affectionate𝜂

17

Projectivity

(17) Fucking [fucking Lou’s friend] is being affectionate for once.

(18) affectionate 𝜄x[x friend l] ∙ l ∧ 𝜄x[x friend l]
⊛

𝜄x[x friend l] ∙ l ∧ 𝜄x[x friend l]

fucking 𝜄x[x friend l] ∙ l

fucking Lou’s friend

𝜆x . affectionate x ∙ ⊤

affectionate𝜂

18

A note on mixed expressives

We’ve been concentrating (and will continue to do so) on functional
expletive expressives – those that contribute only expressive content, and
no descriptive content, such as damn and fucking (Gutzmann 2013).

We’ll largely ignore mixed expressives such as pejoratives – those that
contribute both descriptive and expressive content – but it’s
straightforward to model them in a writer-monadic setting.

(19) mudblood = (𝜆x . muggle x) ∙ muggle∩

(20) mudblood ⊛ Hermione𝜂 = muggle h ∙ muggle∩

19

Capturing non-local readings

Non-local readings: DP-level

Gutzmann (2019) argues extensively that EAs give rise to so-called
non-local readings. I will take his empirical claims to be essentially correct,
aiming to answer the questions of why and how.

(21) The [fucking cat] is being affectionate for once. 𝜄x[cat x]

(21) can convey that the speaker has a negative attitude towards the cat –
despite the fact that fucking takes as its sister just the NP cat. Note,
importantly, that (21) is compatible with (i) the speaker having a positive
attitude towards the situation, and (ii) the speaker having a positive
attitude towards cats in general.

20

Non-local readings: clausal level

Both (22) and (23) can convey that the speaker has a negative attitude
towards the fact that the cat peed on the couch: p. This, despite the fact
that fucking is syntactically within the DP.

(22) The fucking cat (which I love)
is peeing on my favourite couch. p

(23) The cat is peeing on my favourite fucking couch. p

21

Gutzmann’s syntactic account

Gutzmann (2019) claims that EAs come with an uninterpretable
expressive feature, and the heads of constituents which can be the target
of the expressive attitude come with an unvalued, interpretable
expressive feature.

DP

D

the
[iEx:]

NP

AP

A
fucking
[uEx:]

NP

dog

Via upwards agree, the uninterpretable expressive feature gets deleted,
and the interpretable expressive feature gets valued.

22

Some straightforward worries

• Find me a language with some overt realization of expressive
agreement!

• As we’ll see later, the syntactic restrictions on non-local readings
identified by Gutzmann pattern with scope islands.

• Nothing insightful to say about the interaction between expressive
adjectives and quantificational determiners.

There are some pretty compelling reasons to conceptually disprefer an
account based on expressive features that never have an overt
morphological realization.

Instead, I’m going to pursue a scope-based account of non-local readings,
which requires a short detour into continuation semantics...

23

Scope via Cont

The continuation monad

The continuation monad Cont provides a fully compositional account of
scope-taking – see Shan (2002a), Barker & Shan (2014), and Charlow
(2014).

(24) Kt a ≔ (a → t) → t

(25) Scopal lift:
x↑ ≔ 𝜆k . k x a → Kta

(26) Scopal application
S m n ≔ 𝜆k . m (𝜆x . n (𝜆y . k (A x y)))

{
Kt (a → b) → Kt a
Kt a → Kt (a → b)

→ K b
24

Tower notation

We can abbreviate continuized types and meanings using Barker & Shan’s
(2014) tower notation. The continuation type constructor encodes the
result type on the top tier and the type of the contained ordinary value
on the bottom tier.

(27) Kt a ≔
t

a

Scopal lift takes a value and returns a trivial tower:

(28) x↑ ≔
[]

x
a →

t

a

25

Tower notation ii

Scopal application composes two towers – scopal side-effects get
sequenced, and the contained, ordinary values undergo function
application:

(29)
f []

x
 S

g []

y
≔

f [g []]

A x y

t

a → b
→

t

a
→

t

b

or

t

a
→

t

a → b
→

t

b

26

Tower notation iii

Finally, we need a way of lowering towers to ordinary values, in order to
evaluate scopal side effects. We accomplish this by feeding a tower the
identity function.

(30) (
f []

p
)

↓

= f p
t

t
→ t

It’s important to note, by the way, that towers are a notational
convenience and have no independent representational status – unlike,
e.g., Potts’ parse trees – everything can be expressed in a purely
model-theoretic (and therefore fully compositional) way.

27

The continuation monad and scope

∀x[d hug x]

↓
∀x []

d hugs x
S

[]

d
Dani↑

∀x []

𝜆y . y hugs x
S

[]

𝜆xy . y hugs x
hugs↑

∀x []

x
everyone

28

Scope islands

A surprising fact – quantificational scope is roofed in certain syntactic
environments – scope islands.

(31) Yasu crashed at least one bike
[belonging to every linguist]⏟⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏟

scope island

7 ∀ > at least one

(32) If [every ling prof is productive],
the department will flourish. 7 ∀ > if...then

(33) At least two profs
reported [that every student passed]. 7 ∀ > at least two

29

Scope islands ii

On the syntactic side, theories of scope islands haven’t advanced much
since May (1977). Continuations provide a unified semantic account of
scope islands, grounded in the notion of a phase – the intuitive idea is that
a scope island is a constituent at which no computations can be pending.

(34) Definition: (from Charlow 2014: p. 90)
A scope island is a constituent that must be evaluated.

We can characterize this formally in terms of continuized types, but the
idea is intuitive – every continuation must be lowered via (↓) before a
constituent is considered evaluated – no towers allowed.

30

Scope islands iii

(35) Dani read at least one magazine
sold in every shop. 7 ∀ > at least one

(36) Unevaluated relative clause:

J[sold in every shop]K =
∀x[shop x → []]

𝜆y . y soldIn x

t

e → t

If we try to lower (36) via (↓) we get a type mismatch, (the de-sugared
type is ((e → t) → t) → t). The scope of the universal must be fixed
pre-abstraction for the relative clause to be evaluated.

31

Scope islands iv

...

magazine 𝜆y . ∀x[shop x → y soldIn x]

𝜆y ∀x[shop x → y soldIn x]

↓
∀x[shop x → []]

x soldIn y
S

[]

y
t↑y

∀x[shop x → []]

𝜆y . x soldIn y
S

[]

soldIn
sold in↑

∀x[shop x → []]

x
every shop 32

Fancy Cont

Consider again the type of a monad M’s sequencing operation (this time
using tower notation to emphasise the correspondence):

(37) (≫=) ≔ M a →
M b

a
de-sugared: M a → (a → M b) → M b

Essentially, (≫=) takes a fancy a, and returns a monadic continuation.

We’ll use (≫=) to lift monadic values into trivial monadic scope takes.
(≫=) ∘ (𝜂). Corresponds to monadic (↑). (𝜂) corresponds to monadic (↓)

(38) (↑) ≔ (≫=) ∘ (𝜂)

(39) (↓) ≔ (𝜂)
33

Expressive adjectives as scope-takers

EAs as scope-takers

Armed with our new compositional regime for dealing with scopal
side-effects, we can lift our old meaning for fucking into a scope-taker:

(40) fucking′ m ≔
fucking []

m
a →

W e

a

fucking’ contributes an identity function locally, and waits for a fancy
individual in order to evaluate its scope.

34

EAs as scope-takers ii

fucking’ generalizes our original treatment of fucking – the scopal
side-effect of fucking can be immediately evaluated just in case it
composes with a fancy individual.

d ∙ d

↓
fucking []

d ∙ ⊤

𝜆x .
fucking []

x
fucking′

d ∙ ⊤
Daniele𝜂

35

DP-level readings

(41) The fucking dog.

𝜄x[dog x] ∙ 𝜄x[dog x]

↓
fucking []

𝜄x[dog x] ∙ ⊤
S

[]

𝜆x . x ∙ ⊤
𝜂↑

fucking []

𝜄x[dog x]
S

[]

the
the↑

fucking []

dog

𝜆P .
fucking []

P
fucking’

dog

36

Clausal readings

(42) The fucking dog peed outside.

(peedOutside 𝜄x[dog x])∩

∙ (peedOutside 𝜄x[dog x])∩

(↓) ∘ (𝜂↑)
fucking []

(peedOutside 𝜄x[dog x])∩

∩↑
fucking []

peedOutside 𝜄x[dog x]

fucking []

𝜄x[dog x] ∙ ⊤

the fucking dog

[]

peedOutside

peed outside

One way of accounting for clausal readings without positing a polysemous fucking is to

invoke a proposition-to-individual shift.
37

Expressive adjectives and scope islands

Hypothesis: the expressive contribution of adjectives such as fucking
takes scope; so-called “non-local” readings of expressive adjectives are a
scopal phenomenon.

Prediction: Non-local readings of expressive adjectives should be
sensitive to scope islands.

38

Scope islands and expressives

Gutzmann (2019) provides extensive argumentation that non-local
readings of EAs are subject to syntactic restrictions – they are sensitive to
syntactic islands such as relative clauses, but crucially also cannot extend
out of finite clauses, just like other scope-takers.

(43) Peter said [that the dog ate the damn cake].
7 (Peter said that the dog ate the cake)
7 (Peter)

(44) The dog that ate the damn cake is hungry.
7 (the dog that ate the cake is hungry)
7 (the dog that ate the cake)

39

Scope islands and expressives ii

The sensitivity of EAs to scope islands falls out as a prediction of the
semantics we assigned to them.

Consider the semantics of an unevaluated relative clause with an
expressive side-effect:

(45) J[that ate the damn cake]K =
fucking []

𝜆y . y ate theCake

W e

e → t

The scope of the expressive cannot be evaluated due since the bottom of
the tower isn’t (and can’t be shifted to) type W e. The scope of the
expressive must therefore be evaluated inside of the relative clause.

40

Scope islands and expressives iii

It’s important to note that expressive side-effects once evaluated are
predicted to (and do) survive through scope islands. Consider the
semantics of an evaluated relative clause with expressive side effects:

(46) J[that ate the damn cake]K = 𝜆y . y ate theCake ∙ theCake

The expressive attitude assigned to the cake percolates up via vanilla
writer-monadic composition:

(47) Jthe dog that ate the damn cake is hungryK
= hungry 𝜄x[dog x ∧ x ate theCake] ∙ theCake

41

Quantification, binding, and expressives

Expressives and indeterminacy

When uttered by a speaker who likes cats, (48) can express a negative
attitude towards whichever cat that happens to be being affectionate –
the resolution of the expressive attitudes is therefore indeterminate.

(48) A fucking cat is being affectionate for once. 7 ∃x[x]

This would fail to guarantee that the target of the expressive attitude is
the same as the cat being affectionate. Rather, it seems like we want the
existential quantifier to take scope over both the descriptive content and
the expressive content.

Something like: ∃x[(cat x ∧ affectionate x) ∙ x]

How do we accomplish this compositionally?

42

Expressives and indeterminacy ii

By way of contrast:

(49) Every fucking cat is being affectionate for once. 3∀x[x]

43

Charlow’s monadic grammar

Charlow (2014) makes use of the State.Set monad in order to provide a
monadic grammar which captures indefinites’ ability to trigger
indeterminacy and to introduce discourse referents.

(50) S a ≔ s → { ⟨a, s⟩ }

(51) x𝜂 ≔ 𝜆i { ⟨x, i⟩ }

(52) m ≫= k ≔ 𝜆i . ⋃
⟨x,j⟩∈m i

k x j

44

Charlow’s monadic grammar ii

(53) aDog = 𝜆i . { ⟨x, s + x⟩ ∣ dog x }

𝜆i . { ⟨isOutside x, i + x⟩ ∣ dog x }
⊛

𝜆i . { ⟨x, s + x⟩ ∣ dog x }

a dog

𝜆i . { ⟨isOutside, i⟩ }

is outside𝜂

Indefinite phrases trigger state-sensitive, branching computations.

45

Determiner meanings

(54) a ≔ 𝜆c . 𝜆s . { ⟨x, s′⟩ ∣ ⟨True, s′⟩ ∈ c x s } (e → S t) → S e

Tripartite type:

S e S t

e

Tower meaning:

a (𝜆x . [])

x

46

Composing restrictors with determiners

(55)
a (𝜆x . [])

x

S e S t

e

(56)
[]

dog

S t

e → t

(57)
a (𝜆x . [])

dog x

S e S t

t

(58) a(𝜆x . (dog x)𝜂) S e

(59) = 𝜆s . { ⟨x, s⟩ ∣ dog x } 47

Folding expressivity back in

It’s easy to define a new monad, F, which folds the expressive dimension
via Writer into Charlow’s State.Set – we can call it State.Set.Writer.

(60) F a ≔ s → { ⟨a ∙ t, s⟩ }

(61) x𝜂 ≔ 𝜆i ., { ⟨x ∙ ⊤, i⟩ }

(62) m ≫= k = 𝜆i . { ⟨v ∙ p ∧ q, h⟩
||||

⟨x ∙ p, j⟩ ∈ m i

∧ ⟨v ∙ q, h⟩ ∈ k x j
}

48

Indefinites and expressivity

Our first step is to redefine fucking as a function from F−fancy individuals
to F−fancy individuals.

(63) fucking m ≔ 𝜆i . { ⟨x ∙ p ∧ x, j⟩ ∣ ⟨x ∙ p, j⟩ ∈ m i } F e → F e

We then lift the resulting meaning into a scope taker, just as before.

(64) fucking′m ≔ 𝜆k . fucking k m a →
F e

a

Composing this with a predicate such as dog, gives us back a predicate
with an expressive side effect that takes scope.

(65)
fucking []

dog

F e

e → t
49

Indefinites and expressivity ii

Q: how do we compose expressions of type
S e S t

e
and

F e

e → t
?

First, we externally lift a, adding a multi-dimensional tier.

(66) a⇑ =

[]

a (𝜆x . [])

x

F e

S e S t

e

50

Indefinites and expressivity iii

Now, we internally lift fucking dog, adding a State.Set tier.

(67) fucking dog⇈ =

fucking []

[]

dog

F e

S t

e → t

51

Indefinites and expressivity iv

Now we compose the two via tripartite scopal application:

(68)

fucking []

a (𝜆x . [])

dog x

F e

S e S t

t

We can lower the bottom tiers of the tower into a fancy individual in the
S dimension.

(69)
fucking []

𝜆s . { ⟨x, s⟩ ∣ dog x }

F e

S e

52

Indefinites and expressivity v

Finally, we lift the bottom tier of the tower from the State.Set to the
State.Set.Writer dimension.

(70)
[]

𝜂𝜂
S

fucking []

𝜆s . { ⟨x, s⟩ ∣ dog x }
=

fucking []

𝜆s . { ⟨x ∙ ⊤, s⟩ ∣ dog x }

Finally, we collapse the whole thing via lower.

(71) a fucking dog = 𝜆s . { ⟨x ∙ x, s′ + x⟩ ∣ dog x }

53

Indefinites and expressivity ii

𝜆s . {
⟨outside x ∙ x, s⟩
⎪dog x

}

𝜆s . {
⟨x ∙ p ∧ x, s′⟩
⎪⟨True ∙ p, s′⟩ ∈ { ⟨dog x ∙ ⊤, s⟩ }

}

a fucking dog

𝜆s . { ⟨𝜆x . outside x ∙ ⊤, s⟩ }

is outside𝜂

54

Expressives and binding

(72) A fucking cat is being affectionate for once.
Its fucking friend is (being affectionate for once) too.

(72) has a reading according to which the speaker has a negative attitude
towards an indeterminate cat x, and a negative attitude towards x’s friend
(whoever that turns out to be).

(73) {
affectionate x

∧ affectionate y
•

x

∧ y

||||

cat x

∧ y friend x
}

This shows that expressive content must be state sensitive in exactly the
way that our compositional regime predicts, since the expressive content
associated with the second sentence is sensitive to the discourse referent
introduced in the first. 55

Expressives and roofing

I won’t show the details here, but we predict that any dynamically closed
operator that block the DP-level reading of an expressive with an
indefinite – just in case the scope of the indefinite is roofed by negation.

(74) I didn’t see a fucking dog.

If the indefinite is interpreted within the scope of negation, this can’t be
interpreted as an expressive attitude targetting any particular dog.

56

Expressives and other quantifiers

To the extent that expressives allow DP-level readings with other
quantifiers, we predict that the expressive attitude should always target a
maximal dref. This seems correct.

(75) Hans gave a good grade to exactly three fucking students.

Crucially, this doesn’t convey that the speaker has a negative attitude
towards exactly three students – this is way too weak, rather it conveys,
for whichever students X Hans gave a good grade to, the speaker has a
negative attitude towards X.

57

Conclusion

Conclusion

• Following work by Giorgolo & Asudeh (2012) and Charlow (2015),
we’ve shown that expressive content can be integrated into an
existing compositional regime, in a fully compositional way, via
Writer.

• Marshalling independently motivated mechanisms for scope-taking
(i.e. the Cont monad), opens the doors to a compositional account
of non-local readings of EAs.

• Once we integrate Writer into a monadic grammar with the
resources to model state-sensitivity and indeterminacy, we end up
with a system which accounts – without much else needing to be
said – for the distinctive way in which expressive content interacts
with logical operators such as quantificational determiners.

58

Thank you

Acknowledgements

Thanks especially to Elin McCready and Ryan Walter Smith for much
useful discussion.

59

References

Barker, Chris & Chung-chieh Shan. 2014. Continuations and natural
language. (Oxford studies in theoretical linguistics 53). Oxford
University Press. 228 pp.

Charlow, Simon. 2014. On the semantics of exceptional scope.
Charlow, Simon. 2015. Conventional implicature as a scope phenomenon.

Slides from an invited talk at the workshop on continuations and
scope. NYU.

Elliott, Patrick D. 2019. Applicatives for anaphora and presupposition. To
appear in the Proceedings of LENLS15.

Giorgolo, Gianluca & Ash Asudeh. 2012. ⟨M, 𝜂, ∗⟩: monads for
conventional implicatures. In Proceedings of sinn und bedeutung 16
(MIT Working papers in Linguistics), 265–278.

Gutzmann, Daniel. 2013. Expressives and beyond: an introduction to
varieties of use-conditional meaning. In Daniel Gutzmann &
Hans-Martin Gärtner (eds.), Beyond expressives: explorations in
use-conditional meaning, 1–58. Brill.

59

Gutzmann, Daniel. 2019. The grammar of expressivity. New York, NY:
Oxford University Press.

May, Robert. 1977. The grammar of quantification. Massachussetts
Institute of Technology dissertation.

McCready, E. 2010. Varieties of conventional implicature. Semantics and
Pragmatics 3.

McCready, E. 2012. Emotive equilibria. Linguistics and Philosophy 35(3).
243–283.

Shan, Chung-chieh. 2002a. A continuation semantics for interrogatives
that accounts for Baker’s ambiguity. In Brendan Jackson (ed.), Salt xii,
246–265. Massachussetts Institute of Technology: Linguistic Society of
America.

Shan, Chung-chieh. 2002b. Monads for natural language semantics.
arXiv:cs/0205026.

59

	Introduction
	The Writer monad
	Expressive Writer
	Capturing non-local readings
	Scope via Cont
	Expressive adjectives as scope-takers
	Quantification, binding, and expressives
	Conclusion
	Thank you
	References

