
Movement as higher-order structure building

Patrick D. Elliott (ZAS)

June 11, 2019

Universität Göttingen



Overview

• Current theories of movement at give rise to conceptual worries
vis a vis interface requirements. Is Internal Merge causing more
problems than it solves?

• The goal here: develop a radically different perspective on
syntactic displacement as higher-order structure building,
borrowing well-established standard mechanisms from
Montagovian semantics for dealing with semantic displacement
(i.e., scope).

• Some payoffs include:
• No need for trace conversion.
• An account of Müller’s (2001) generalized order preservation.
• An account of the interaction between scrambling and

scope-taking in scope-rigid languages such as Japanese.

1



Roadmap

• A (non-standard) overview of movement in minimalist syntax +
some conceptual worries.

• An analogy between overt syntactic displacement and the
QR-analysis of semantic displacement.

• Reifying the analogy in a purely derivational system via
higher-order structure building.

• An analysis of wh-movement.

• An extension to quantifier raising and scrambling.

• Finish!

2



Formal Preliminaries



Types for syntax

• Since this is a theory talk, let’s try to be precise about the
operations we’re using.

• Types will help us give an explicit treatment of syntactic operations
as functions.

• Fortunately, we’re only going to need one primitive type: Let 𝕥 be
the type of a Syntactic Object (so). Whenever I talk about
syntactic types or variables over sos, I’ll use 𝕓𝕝𝕒𝕔𝕜𝕓𝕠𝕒𝕣𝕕 font.

3



Function types

• We can’t really do anything interesting with just our primitive type
t. We’ll also avail ourselves of function types.

• I’ll use (→) as the constructor for function types (cf., e.g., Heim &
Kratzer 1998 who use ⟨.⟩).

• a → b is the type of a function from things of type a to
things of type b.

• Where Heim & Kratzer write ⟨⟨𝑒, 𝑡⟩, 𝑡⟩, i’ll write (𝑒 → 𝑡) → 𝑡.
• N.b. that (→) is right-associative, so 𝑒 → 𝑒 → 𝑡 ≡ 𝑒 → (𝑒 → 𝑡).

4



Merge

• We’ll take as our starting point the hypothesis that the basic
structure-building operation in natural language is Merge
(Chomsky 1995).

• We define Merge in a pretty standard way – it’s a function that
takes two sos, and returns a new (unlabelled) so.

(1) Merge (def.)
𝕏 ∗ 𝕐 ≔ [𝕏 𝕐] ∷= 𝕥 → 𝕥 → 𝕥

• Note: following, e.g., Stabler (1997), we assume that merge is
asymmetric:

𝕏 ∗ 𝕐 ≠ 𝕐 ∗ 𝕏

5



Merge

• Merge successively applies to sos constructing a structured
representation, as in (2):

(2) [Andreea [likes Yasu]]
∗ ≔ 𝕥 → 𝕥 → 𝕥

Andreea ≔ 𝕥 [likes Yasu]
∗ ≔ 𝕥 → 𝕥 → 𝕥

likes ≔ 𝕥 Yasu ≔ 𝕥

• Important: the tree is a graph of the derivation, rather than a
representation in its own right.

6



An aside on type 𝕥

• Let the type of the atomic unit of syntactic computation (a lexical
object, root, etc.), be L. This allows us to define 𝕥 recursively.

𝕥 ≔ L | [𝕥]

7



Movement in Merge-based
frameworks



Internal Merge i

• Certain expressions (such as wh-expressions) are pronounced in
positions other than where they’re interpreted – or, more precisely,
where a part of their meaning (the variable) is interpreted.

• The standard approach to this phenomenon in minimalism is
Internal Merge.

• This can be cashed out in two different ways: the copy theory and
the multidominance theory of movement.

• I’ll just present the copy theory for exposition, but
multidominance approaches are subject to the same issues.

8



Internal Merge ii

• According to the copy theory, movement involves merging a copy
of an so contained within the derived syntactic structure.

9



Internal Merge iii

(3)

...

...

which boy

...

CQ ...

Josie ...

hugs ...

which boy

• It’s not trivial to implement

Internal Merge as a function. It

should traverse through the

constructed syntactic

representation for the so to be

copied-and-remerged (although

see Collins & Stabler 2016 for a

local formulation).

10



Trace conversion i

• Regardless of how Internal Merge is implemented, the
representation interpreted by the semantic component must look
something like this (Fox 2002, Sauerland 2004):

11



Trace conversion ii

{ J hugs 𝑥 ∣ boy 𝑥 }

𝜆𝑘 .  ⋃
boy 𝑥

𝑘 𝑥

which boy

𝜆𝑥′  ∶ boy 𝑥′ .  { J hugs 𝑥′ }

𝑖 ...

CQ ...

Josie ...

hugs 𝜄𝑥[boy 𝑥 ∧ 𝑥 = 𝑔𝑖]

the𝑖 boy

(4) Jthe𝑖K𝑔 = 𝜆𝑃 . 𝜄𝑥[𝑃 𝑥 ∧ 𝑥 = 𝑔𝑖]

(5) Predicate abstraction (def.)J[𝑖 𝕏]K𝑔 = 𝜆𝑥 .  J𝕏K𝑔[𝑖→𝑥]

12



Trace conversion iii

• How do we get from a copy-theoretic representation to the
representation required by the semantics?

• First off, we need a syntactic operation that applies to the lower
copy, and replaces the determiner with the𝑖 .

(6) Trace Conversion (def.)
tc [𝔻 ℕ]𝑖 ≔ [the𝑖 ℕ]

• We also need a syntactic operation that places a binding index
immediately below the higher copy, in order to trigger abstraction
over the lower copy.

13



Trace conversion iv

• Due to the demands of the interface, much of the conceptual
appeal of Internal Merge is lost.

• Trace Conversion = the name for a problem, rather than a
solution (although, see Fox & Johnson 2016 for a more principled
account).

• Goal for the next section: an approach which retains the
conceptual appeal of Internal Merge, where
meaning-computation can proceed in tandem with movement
derivations, without the need for syntactic magic, such as Trace
Conversion, and binding index insertion.

14



Higher-order structure building



The discussion ahead

• Exploring a (failed?) analogy with between displacement as
Quantifier Raising.

• Reifying the analogy in a derivational framework.

• Introducing our players:

scopal-Merge (⋆) Our version of internal merge.

Lift (↑) Converting an so into a trivial scope-taker.

Higher Order Merge (⊛) A combinatorics for scopal syntactic values.

15



An analogy with QR i

• Before we present our analysis, let’s entertain an analogy.

• Imagine that derivation graphs are, themselves, fully-fledged
representations.

(7) [Andreea [likes Yasu]]
∗

Andreea ≔ 𝕥 [likes Yasu]
∗

likes ≔ 𝕥 Yasu ≔ 𝕥

16



An analogy with QR ii

• Now, let’s define a new unary operation, s-Merge (i.e., scopal
merge), which we’ll write as (⋆). It’s just defined in terms of merge
+ lambdas and variables.

(8) ⋆ 𝕏 ≔ 𝜆𝑘 . 𝕏 ∗ (𝑘 𝕏) (⋆) ∷= 𝕥 → (𝕥 → 𝕥) → 𝕥

• (⋆) takes a so, and shifts it into a function that takes a function
from sos to sos, and returns an so.

(9) ⋆ Andreea = 𝜆𝑘 . Andreea ∗ (𝑘 Andreea) (𝕥 → 𝕥) → 𝕥

• You can think of ⋆ as a function from an so to something that
takes scope over sos.

17



An analogy with QR iii

• If we apply (⋆) to an so over the course of our derivation, we end
up with a type mismatch. Merge takes two arguments of type 𝕥.

...

Yasu 7

∗ ∷= 𝕥 → 𝕥 → 𝕥

𝕥
likes

(𝕥 → 𝕥) → 𝕥

⋆

Andreea

18



An analogy with QR iv

• In order to resolve this type mismatch let’s assume we can scope
out the ⋆−shifted so via QR – assuming that something of type
(𝕥 → 𝕥) → 𝕥 binds a type 𝕥 variable.

• The result will be a kind of derivational scope; (⋆ Andreea)
contributes the so Andreea locally, and the function
(𝜆𝕏 . Andreea ∗ 𝕏) takes scope.

• When we compute the result, we will end up with a copy-theoretic
representation.

19



An analogy with QR v

[𝜆𝑘 . Andreea ∗ (𝑘 Andreea)] (𝜆𝕏 .[Yasu [likes 𝕏]])

=Andreea ∗ ([𝜆𝕏 .[Yasu [likes 𝕏]]] Andreea)

=Andreea ∗ ([Yasu [likes Andreea]])

=[Andreea [Yasu [likes Andreea]]]
fa

𝜆𝑘 . Andreea ∗ (𝑘 Andreea)
⋆ Andreea

𝜆𝕏 .[Yasu [likes 𝕏]]

𝜆𝕏 [Yasu [likes 𝕏]]
∗

Yasu [likes 𝕏]
∗

likes 𝕏

20



The analogy breaks down

• Unfortunately, the analogy with QR breaks down – since
derivation graphs are not themselves representations, it doesn’t
really make sense conceptually to posit an operation of QR that
applies to a derivation graph.

• What we want, intuitively, is a way of compositionally integrating
scopal values into a computation.

• We’ll model our approach on Barker & Shan’s (2014) continuation
semantics.

21



Tower notation for scopal values

• Scopal values are of type (a → b) → b. Barker & Shan (2014)
introduce a convenient notational shortcut for scopal types –
tower types.

(10)
b

a
≔ (a → b) → b

• Similarly, scopal values themselves can be rewritten using tower
notation:

(11)
𝑓 []

𝑥
≔ 𝜆𝑘 . 𝑓 (𝑘 𝑥)

22



Applying tower notation to quantifiers

• Standard entries for quantificational expressions can be rewritten
using tower notation, like so:

(12) everyone = 𝜆𝑘 . ∀𝑥[𝑘 𝑥] ∷= (e → t) → t

=
∀𝑥[]

𝑥
∷=

t

e

23



Back to ⋆

• We can now rewrite the syntactic operation s-Merge (⋆) using
tower notation:

(13) ⋆ 𝕏 ≔
𝕏 ∗ []

𝕏
(⋆) ∷=

𝕥

𝕥

• Recall that ⋆−shifting a so gives rise to a type mismatch in the
derivation. Let’s explore a different way of incorporating
⋆−shifted sos into the derivation.

24



Lift and HOMerge i

• In order to do this, we need to define two new derivational
operations.

• Lift takes an so and returns a trivially scopal/higher-order so.

(14) Lift (def.)

𝕏↑ ≔ 𝜆𝑘 . 𝑘 𝕏 (↑) ∷= 𝕥 →
𝕥

𝕥

25



Lift and HOMerge ii

• Higher Order Merge provides us with a way of merging two
higher-order/scopal syntactic objects.

(15) Higher Order Merge (def.)

𝑚 ⊛ 𝑛
≔ 𝜆𝑘 . 𝑚 (𝜆𝕏 . 𝜆𝑛 . (𝜆𝕐 . 𝜆𝑘 . (𝕏 ∗ 𝕐)))

(⊛) ∷=
𝕥

𝕥
→

𝕥

𝕥
→

𝕥

𝕥

26



Lift and HOMerge iii

• In order to see what’s going on, it will be easier to rewrite these
functions using tower notation.

• Lift coverts an so into a trivial tower.

𝕏↑ ≔
[]

𝕏

• HO Merge provides a way of merging two towers.

𝑓 []

𝕩
⊛

𝑔 []

𝕐
≔

𝑓 [𝑔 []]

𝕏 ∗ 𝕐

27



Displacement via HOMerge

• Now we have everything we need to incorporate ⋆−shifted sos
into the syntactic derivation:

Yasu ∗ []

[Andreea [likes Yasu]]

⊛

[]

Andreea

Andreea↑

Yasu ∗ []

[likes Yasu]

⊛

[]

likes

likes↑

Yasu ∗ []

Yasu

⋆ Yasu 28



Collapsing the tower

• Finally, we need a syntactic operation to lower a higher-order so
back down to an ordinary so. We can define Lower simply as the
identity function.

(16) Lower (def.)

↓ 𝑚 ≔ 𝑚 id (↓) ∷=
𝕥

𝕥
→ 𝕥

• Lowering the higher-order so gives us the same result as the copy
theory of movement!

↓   (
Yasu ∗ []

[Andreea [likes Yasu]]
) = [Yasu [Andreea [likes Andreea]]]

29



From structure to strings

• Since we’re adopting a radically derivational perspective, we don’t
really need to refer to the outputted structural representations for
anything. Let’s simplify things and just treat Merge as
concatenation (see Kobele 2006 for a thorough demonstration that
this is harmless).

(17) 𝕏 ∗ 𝕐 ≔ 𝕏 ∶ 𝕐

• On this view, it’s natural to redefine ⋆ such that the local value has
null phonological content:

(18) ⋆ 𝕏 ≔
𝕏 ∗ []

∅

30



Simplifying further ii

(19) Yasu, Andreea likes.

(20) ((Andreea↑) ⊛ ((likes↑)  ⊛ (⋆Yasu)))↓

= (𝜆𝑘 .Yasu ∗ (𝑘 (Andreea ∶ likes ∶ ∅)))↓

= Yasu ∶ Andreea ∶ likes ∶ ∅

31



Extension to wh-movement



Incorporating a basic feature calculus

• In order to extend the proposal to wh-movement, we must make it
more syntactically realistic. We’ll treat sos as feature bundles;
Merge concatenates feature bundles.

• We can now redefine merge as a feature sensitive operation.
• Merging an so 𝕏 with an uninterpretable 𝑄 feature with another

so (𝕐 ∶ ℤ) results in ungrammaticality (♯), unless the head 𝕐
carries an interpretable 𝑄 feature.

(21) a. 𝕏[ᵆ𝑄] ∗ (𝕐[𝑖𝑄] ∶ ℤ) = 𝕏 ∶ 𝕐[𝑖𝑄] ∶ ℤ

b. 𝕏[ᵆ𝑄] ∗ 𝕐 = ♯

c. 𝕏 ∗ 𝕐 = 𝕏 ∶ 𝕐

• This needs to be generalised, but this will do for now.

32



Incorporating a basic feature calculus ii

• We can now additionally redefine (⋆) in a feature sensitive way:

(22) ⋆ 𝕏[𝑑,ᵆ𝑄] ≔
𝕏[𝑑,ᵆ𝑄]

∅[𝑑]

• We now have everything we need to account for feature-driven
movement in a more realistic way:

(23) a. ((C↑
[𝑖𝑄]) ⊛ ((Andreea↑) ⊛ ((likes↑) ⊛ (⋆who[𝑑,ᵆ𝑄]))))↓

b. (𝜆𝑘 . who[𝑑,ᵆ𝑄] ∗ 𝑘 (C[𝑖𝑄] ∶ Andreea ∶ likes ∶ ∅[𝑑]))↓

c. who[𝑑] ∶ C[𝑖𝑄] ∶ Andreea ∶ likes ∶ ∅[𝑑]

33



A syntactic payoff: generalised order preservation

• order preservation effects are pervasive in syntax (Müller 2001),
e.g., superiority effects in English and multiple wh-fronting
languages such as Bulgarian.

(24) a. I wonder who𝑥 𝑡𝑥 bought what𝑦 .

b. *I wonder what𝑦 who bought 𝑡𝑦 .

(25) a. Koj
Who

kakvo
what

kupuva?
buys?

b. *Kakvo
What

koj
who

kupuva?
buys?

34



Generalised order preservation ii

• Order-preservation falls out as the unmarked case in the system
outlined here. This is because HO Merge (repeated below)
sequences movements from left-to-right.

𝑓 []

𝕩
⊛

𝑔 []

𝕐
≔

𝑓 [𝑔 []]

𝕏 ∗ 𝕐

• We ignore the feature calculus here for ease of exposition:

(26) a. ↓  (((⋆ who) ⊛ ((buys↑) ⊛ (⋆ what))))

b. =↓  (𝜆𝑘 . who ∗ (what ∗ (𝑘 (∅ ∶ buys ∶ ∅))))

c. = who ∶ what ∶ ∅ ∶ buys ∶ ∅

35



Doing semantics in tandem

• In this system, semantic computation can proceed in tandem with
syntactic computation. We’ll assign a single meaning to a
wh-expression which will predict that it scopes exactly at the
position it’s moved to.

• We adopt a generalized Karttunen semantics for wh-expressions –
they scope over question meanings and return question meanings
(Cresti 1995, Charlow 2014, Elliott 2017)

(27) JwhoK ≔ 𝜆𝑘 .  ⋃
person 𝑥

𝑘 𝑥 (𝑒 → { 𝑡 }) → { 𝑡 }

• Note that wh-expressions have a scopal semantics – we can scope
them using semantic correlates of Lift and HO Merge (Barker &
Shan 2014).

36



Return and Scopal Function Application

• We take the semantic correlate of the syntactic operation Lift to
be Return (𝜌).

(28) 𝑥𝜌 ≔
[]

𝑥
(𝜌) ∷= a → (a → { b }) → { b }

• We take the semantic correlate of the syntactic operation HO
Merge to be Scopal Function Application (S).

(29)
𝑓 []

𝑥
 S 

𝑔 []

𝑦
≔

𝑓 [𝑔 []]

A 𝑥 𝑦

37



Semantic computation

• Finally, we take the meaning of C[𝑖𝑄] to be singleton-set formation.
{Andreea likes 𝑥 ∣ person 𝑥 }

𝜆𝑥 .  { 𝑥 }
C[𝑖𝑄]

⋃
person 𝑥

[]

Andreea likes 𝑥
S

[]

Andreea
Andreea𝜌

⋃
person 𝑥

[]

𝜆𝑦 . 𝑦 likes 𝑥
S

[]

𝜆𝑥𝑦 . 𝑦 likes 𝑥
likes𝜌

⋃
person 𝑥

[]

𝑥
who

38



An isomorphism between semantic and syntactic computation

• Note the isomorphism between the semantic computation and
syntactic computation. Both are computed step-by-step, in
tandem.

(30) a. Syntax:JC[𝑖𝑄]K ((JAndreeaK 𝜌) S ((JlikesK 𝜌) S  J⋆ who[𝑑,ᵆ𝑄]K))

b. Semantics:
((C↑

[𝑖𝑄]) ⊛ ((Andreea↑) ⊛ ((likes↑) ⊛ (⋆who[𝑑,ᵆ𝑄]))))

• There is no need for anything like trace conversion. In the syntax,
movement corresponds to scoping the features + phonological
content of a syntactic object, in the semantic component, anything
with a scopal semantics exhibits interpretive displacement via the
same mechanisms.

39



Syn-Sem correspondence

• Merge in the syntax corresponds to Function Application in
the semantics: (∗) ≈ A

• When a moved expression is scopal (i.e. interpreted in its derived
position):

• Lift in the syntax corresponds to Return in the semantics (in fact,
they’re polymorphic instantiations of the same function): (↑) ≈ (𝜌)

• HO Merge in the syntax corresponds to Scopal Function
Application in the semantics: (⊛) ≈ S

40



Quantifier Raising

• In this system, quantifier raising simply involves a scopal
semantics with a non-movement syntax. There is in fact no need
for covert movement.

(31) a. Syntax:
some linguist ∗ (hates ∗ [every philosopher])
= [some linguist] ∶ hates ∶ [every philosopher]

b. Semantics:

(
∃𝑦[linguist 𝑦 ∧ []]

𝑦
 S  (

[]

hates
 S 

∀𝑥[phil 𝑥 → []]

𝑥
))

↓

= ∃𝑦[linguist 𝑦 ∧ ∀𝑥[phil 𝑥 → 𝑦 hates 𝑥]]

• Note that the unmarked case in this system is surface scope. This is
a good prediction for scope-rigid languages like German, but we
need to do a little more to get inverse scope. 41



Quantifier Raising ii

• Barker & Shan (2014) show that we can derive inverse scope by
internally lifting (⇈) the lower quantifier, and (re-)lifting the
higher quantifier. Details suppressed here but see Barker & Shan.

⎛
⎜
⎜
⎜
⎝

[]

∃𝑦[ling 𝑦 ∧ []]

𝑦

 S 
⎛
⎜
⎜
⎜
⎝

[]

[]

hates

 S 

∀𝑥[phil 𝑥 → []]

𝑥

⎞
⎟
⎟
⎟
⎠

⎞
⎟
⎟
⎟
⎠

⇊

=
⎛
⎜
⎜
⎜
⎝

∀𝑥[phil 𝑥 → []]

∃𝑦[ling 𝑦 ∧ []]

𝑦 hates 𝑥

⎞
⎟
⎟
⎟
⎠

⇊

= ∀𝑥[phil 𝑥 → ∃𝑦[ling 𝑦 ∧ 𝑦 hates 𝑥]]

42



QR and scope rigid languages i

• Let’s assume that internal lift is freely available in English, without
any syntactic reflex. This predicts the availability of scopal
ambiguities.

• Languages such as Japanese and Hindi are ordinarily scope rigid
however; scopal ambiguities may arise if a scopal expression is
scrambled.

(32) a. Dareka-ga
someone-nom

daremo-o
everyone-acc

sonkeisiteiru
admire

some > every, *every > some

b. daremo-o
everyone-acc

dareka-ga
someone-nom

𝑡
𝑡

sonkeisiteiru
admire

some > every, every > some
43



QR and scope rigid languages ii

• There’s a very natural perspective to adopt in languages such as
Japanese and Hindi – internal lift isn’t freely available, rather, it is
the semantic reflex of s-Merge (⋆).

44



QR and scope rigid languages iii

(33) Syntax:
([Some philosopher]↑ ⊛ ((hates↑) (⋆ [every linguist])))↓

= [every linguist] ∶ [some philosopher] ∶ [hates] ∶ ∅

(34) Semantics:
((Jsome philosopherK 𝜌) S ((JhatesK 𝜌 ∘ 𝜌) S (Jevery linguistK ⇈)))⇊

=
⎛
⎜
⎜
⎜
⎝

Jevery linguistK  𝜆𝑥 []

Jsome philosopherK  𝜆𝑦 []

𝑦 hates 𝑥

⎞
⎟
⎟
⎟
⎠

⇊

= ∀𝑥[ling 𝑥 → ∃𝑦[phil 𝑦 ∧ 𝑦 hates 𝑥]]

45



QR and scope rigid languages iv

• But scrambling doesn’t just give rise to inverse scope – it gives rise
to scopal ambiguities

• We can account for this by simply positing an implicational rather
than a one-to-one relationship between (⇈) and (⋆) – (⇈) (in
Japanese) implies (⋆) in the syntactic computation, but not vice
versa.

• In other words, (⇈) is an optional semantic reflex of (⋆), but it is
not permitted in the absence of (⇈).

46



Conclusion



Future prospects

• How to account for the following within this framework:
• locality – has a natural treatment in terms of obligatory lowering;

see Charlow (2014) on scope islands.
• Successive-cyclicity – has a natural treatment in terms of lowering

followed by re-s-Mergeing.
• Reconstruction – see Barker & Shan (2014) for a detailed treatment

consistent with this system.
• Late merge – more difficult, but can be analyzed without copies

once more sophisticated mechanisms for scope-taking (indexed
continuations) are adopted. I’ll come back to this in future work.

47



Summing up

• In this talk, I’ve suggested that we can take a cue from the formal
semantics literature, and treat syntactic displacement as a kind of
syntactic scope-taking.

• This move has a major conceptual advantage – semantic
computation can proceed in tandem with syntactic computation.
There is no need for any ad-hoc mechanism for interpreting
movement.

• We’ve mentioned a couple of interesting empirical payoffs – the
analysis of generalised order preservation, and scrambling.

• A more thorough exploration of the properties of this system will
have to wait for another time!

48



Thanks for listening!

49



References i

Barker, Chris & Chung-chieh Shan. 2014. Continuations and natural
language. (Oxford studies in theoretical linguistics 53). Oxford
University Press. 228 pp.

Charlow, Simon. 2014. On the semantics of exceptional scope.
Chomsky, Noam. 1995. The minimalist program. (Current Studies in

Linguistics 28). Cambridge Massachussetts: The MIT Press. 420 pp.
Collins, Chris & Edward Stabler. 2016. A Formalization of Minimalist

Syntax. Syntax 19(1). 43–78.
Cresti, Diana. 1995. Extraction and reconstruction. Natural Language

Semantics 3(1). 79–122.
Elliott, Patrick D. 2017. Nesting habits of flightless wh-phrases.

unpublished manuscript. University College London.



References ii

Fox, Danny. 2002. Antecedent-contained deletion and the copy theory
of movement. Linguistic Inquiry 33(1). 63–96.

Fox, Danny & Kyle Johnson. 2016. QR is restrictor sharing. In
Kyeong-min Kim et al. (eds.), Proceedings of the 33rd West Coast
Conference on Formal Linguistics, 1–16. Somerville, MA: Cascadilla
Proceedings Project.

Heim, Irene & Angelika Kratzer. 1998. Semantics in generative
grammar. (Blackwell textbooks in linguistics 13). Malden, MA:
Blackwell. 324 pp.

Kobele, Gregory. 2006. Generating copies - An investigation into
structural identity in language and grammar. UCLA dissertation.

Müller, Gereon. 2001. Order Preservation, Parallel Movement, and the
Emergence of the Unmarked. In.



References iii

Sauerland, Uli. 2004. The interpretation of traces. Natural Language
Semantics 12(1). 63–127.

Stabler, Edward. 1997. Derivational Minimalism. In, 68–95.


	Formal Preliminaries
	Movement in Merge-based frameworks
	Higher-order structure building
	Extension to wh-movement
	Conclusion

