# Movement as higher-order structure building 

Patrick D. Elliott (ZAS)
JUNE 11, 2019

Universität Göttingen

## Overview

- Current theories of movement at give rise to conceptual worries vis a vis interface requirements. Is Internal Merge causing more problems than it solves?
- The goal here: develop a radically different perspective on syntactic displacement as higher-order structure building, borrowing well-established standard mechanisms from Montagovian semantics for dealing with semantic displacement (i.e., scope).
- Some payoffs include:
- No need for trace conversion.
- An account of Müller's (2001) generalized order preservation.
- An account of the interaction between scrambling and scope-taking in scope-rigid languages such as Japanese.


## ROADMAP

- A (non-standard) overview of movement in minimalist syntax + some conceptual worries.
- An analogy between overt syntactic displacement and the QR-analysis of semantic displacement.
- Reifying the analogy in a purely derivational system via higher-order structure building.
- An analysis of $w h$-movement.
- An extension to quantifier raising and scrambling.
- Finish!

Formal Preliminaries

## TYPES FOR SYNTAX

- Since this is a theory talk, let's try to be precise about the operations we're using.
- Types will help us give an explicit treatment of syntactic operations as functions.
- Fortunately, we're only going to need one primitive type: Let $\mathbb{t}$ be the type of a Syntactic Object (so). Whenever I talk about syntactic types or variables over sos, I'll use blacklboard font.


## FUNCTION TYPES

- We can't really do anything interesting with just our primitive type t . We'll also avail ourselves of function types.
- I'll use $(\rightarrow)$ as the constructor for function types (cf., e.g., Heim \& Kratzer 1998 who use $\langle\rangle$.$) .$
- $a \rightarrow b$ is the type of a function from things of type $a$ to things of type $b$.
- Where Heim \& Kratzer write $\langle\langle e, t\rangle, t\rangle$, i'll write $(e \rightarrow t) \rightarrow t$.
- N.b. that $(\rightarrow)$ is right-associative, so $e \rightarrow e \rightarrow t \equiv e \rightarrow(e \rightarrow t)$.
- We'll take as our starting point the hypothesis that the basic structure-building operation in natural language is Merge (Chomsky 1995).
- We define Merge in a pretty standard way - it's a function that takes two sos, and returns a new (unlabelled) so.
(1) Merge (def.)
$\mathbb{X} * \mathbb{Y}:=[\mathbb{X} \mathbb{Y}] \quad::=\mathbb{t} \rightarrow \mathbb{t} \rightarrow \mathbb{t}$
- Note: following, e.g., Stabler (1997), we assume that merge is asymmetric:

$$
\mathbb{X} * \mathbb{Y} \neq \mathbb{Y} * \mathbb{X}
$$

- Merge successively applies to sos constructing a structured representation, as in (2):

- Important: the tree is a graph of the derivation, rather than a representation in its own right.


## AN ASIDE ON TYPE $\mathbb{t}$

- Let the type of the atomic unit of syntactic computation (a lexical object, root, etc.), be L. This allows us to define $\mathbb{t}$ recursively.

$$
t:=L \mid[t]
$$

Movement in Merge-based
frameworks

## Internal Merge I

- Certain expressions (such as wh-expressions) are pronounced in positions other than where they're interpreted - or, more precisely, where a part of their meaning (the variable) is interpreted.
- The standard approach to this phenomenon in minimalism is Internal Merge.
- This can be cashed out in two different ways: the copy theory and the multidominance theory of movement.
- I'll just present the copy theory for exposition, but multidominance approaches are subject to the same issues.
- According to the copy theory, movement involves merging a copy of an so contained within the derived syntactic structure.


## Internal Merge ili

(3)


## TRACE CONVERSION I

- Regardless of how Internal Merge is implemented, the representation interpreted by the semantic component must look something like this (Fox 2002, Sauerland 2004):


## Trace conversion il



## TRACE CONVERSION III

- How do we get from a copy-theoretic representation to the representation required by the semantics?
- First off, we need a syntactic operation that applies to the lower copy, and replaces the determiner with THE $_{i}$.
(6) Trace Conversion (def.) $\mathrm{TC}[\mathbb{D} \mathbb{N}]_{i}:=\left[\mathrm{THE}_{i} \mathbb{N}\right]$
- We also need a syntactic operation that places a binding index immediately below the higher copy, in order to trigger abstraction over the lower copy.


## Trace conversion iv

- Due to the demands of the interface, much of the conceptual appeal of Internal Merge is lost.
- Trace Conversion = the name for a problem, rather than a solution (although, see Fox \& Johnson 2016 for a more principled account).
- Goal for the next section: an approach which retains the conceptual appeal of Internal Merge, where meaning-computation can proceed in tandem with movement derivations, without the need for syntactic magic, such as Trace Conversion, and binding index insertion.

Higher-order structure building

## The discussion ahead

- Exploring a (failed?) analogy with between displacement as Quantifier Raising.
- Reifying the analogy in a derivational framework.
- Introducing our players:
scopal-Merge ( $\star$ ) Our version of internal merge.
Lift ( $\uparrow$ ) Converting an so into a trivial scope-taker.
Higher Order Merge ( $\circledast$ ) A combinatorics for scopal syntactic values.


## An analogy with QR I

- Before we present our analysis, let's entertain an analogy.
- Imagine that derivation graphs are, themselves, fully-fledged representations.
(7)
[Andreea [likes Yasu]]

likes : $=\mathbb{t} \quad$ Yasu $:=\mathbb{t}$


## An analogy with QR II

- Now, let's define a new unary operation, s-Merge (i.e., scopal merge), which we'll write as ( $\star$ ). It's just defined in terms of merge + lambdas and variables.
(8) $\quad \star \mathbb{X}:=\lambda k \cdot \mathbb{X} *(k \mathbb{X})$

$$
(\star)::=\mathbb{t} \rightarrow(\mathbb{t} \rightarrow \mathbb{t}) \rightarrow \mathbb{t}
$$

- ( $\star$ ) takes a so, and shifts it into a function that takes a function from sos to sos, and returns an so.
(9) $\star$ Andreea $=\lambda k$. Andreea $*(k$ Andreea $)$ $(\mathbb{t} \rightarrow \mathbb{t}) \rightarrow \mathbb{t}$
- You can think of $\star$ as a function from an so to something that takes scope over sos.


## An analogy with $Q R$ III

- If we apply ( $\star$ ) to an so over the course of our derivation, we end up with a type mismatch. Merge takes two arguments of type $t$.



## An analogy with QR iv

- In order to resolve this type mismatch let's assume we can scope out the $\star$-shifted so via QR - assuming that something of type $(\mathbb{t} \rightarrow \mathbb{t}) \rightarrow \mathbb{t}$ binds a type $\mathbb{t}$ variable.
- The result will be a kind of derivational scope; ( $\star$ Andreea) contributes the so Andreea locally, and the function ( $\lambda \mathbb{X}$. Andreea $* \mathbb{X}$ ) takes scope.
- When we compute the result, we will end up with a copy-theoretic representation.


## An analogy with QR v

$$
\begin{aligned}
& {[\lambda k . \text { Andreea } *(k \text { Andreea })](\lambda \mathbb{X} .[\text { Yasu }[\text { likes } \mathbb{X}]]) } \\
&=\text { Andreea } *([\lambda \mathbb{X} .[\text { Yasu [likes } \mathbb{\mathbb { X }}]]] \text { Andreea }) \\
&=\text { Andreea } *([\text { Yasu [likes Andreea }]]) \\
&= {[\text { Andreea }[\text { Yasu [likes Andreea }]]] } \\
& \lambda k . \text { Andreea } *(k \text { Andreea }) \\
& \star \text { Andreea }\lambda \mathbb{X} .[\text { Yasu [likes } \mathbb{X}]]
\end{aligned}
$$

## THE ANALOGY BREAKS DOWN

- Unfortunately, the analogy with QR breaks down - since derivation graphs are not themselves representations, it doesn't really make sense conceptually to posit an operation of QR that applies to a derivation graph.
- What we want, intuitively, is a way of compositionally integrating scopal values into a computation.
- We'll model our approach on Barker \& Shan's (2014) continuation semantics.


## Tower notation for scopal values

- Scopal values are of type $(a \rightarrow b) \rightarrow b$. Barker \& Shan (2014) introduce a convenient notational shortcut for scopal types tower types.
(10) $\frac{\mathrm{b}}{\mathrm{a}}:=(\mathrm{a} \rightarrow \mathrm{b}) \rightarrow \mathrm{b}$
- Similarly, scopal values themselves can be rewritten using tower notation:
(11) $\frac{f[]}{x}:=\lambda k . f(k x)$


## Applying tower notation to quantifiers

- Standard entries for quantificational expressions can be rewritten using tower notation, like so:
(12) everyone $=\lambda k . \forall x[k x] \quad::=(\mathrm{e} \rightarrow \mathrm{t}) \rightarrow \mathrm{t}$

$$
=\frac{\forall x[]}{x} \quad::=\frac{\mathrm{t}}{\mathrm{e}}
$$

## BACK TO *

- We can now rewrite the syntactic operation s-Merge ( $\star$ ) using tower notation:
(13) $\star \mathbb{X}:=\frac{\mathbb{X} *[]}{\mathbb{X}}$ $(\star)::=\frac{\mathbb{t}}{\mathbb{t}}$
- Recall that $\star$-shifting a so gives rise to a type mismatch in the derivation. Let's explore a different way of incorporating $\star$-shifted sos into the derivation.


## Lift and HO Merge I

- In order to do this, we need to define two new derivational operations.
- Lift takes an so and returns a trivially scopal/higher-order so.
(14) Lift (def.)

$$
\mathbb{X}^{\uparrow}:=\lambda k \cdot k \mathbb{X}
$$

$$
(\uparrow)::=\mathbb{t} \rightarrow \frac{\mathbb{t}}{\mathbb{t}}
$$

## Lift and HO Merge iI

- Higher Order Merge provides us with a way of merging two higher-order/scopal syntactic objects.
(15) Higher Order Merge (def.)
$m \circledast n$
$:=\lambda k \cdot m(\lambda \mathbb{X} \cdot \lambda n \cdot(\lambda \mathbb{Y} \cdot \lambda k \cdot(\mathbb{X} * \mathbb{Y})))$
$(\circledast)::=\frac{\mathbb{t}}{\mathbb{t}} \rightarrow \frac{\mathbb{t}}{\mathbb{t}} \rightarrow \frac{\mathbb{t}}{\mathbb{t}}$


## Lift and HO Merge iII

- In order to see what's going on, it will be easier to rewrite these functions using tower notation.
- Lift coverts an so into a trivial tower.

$$
\mathbb{X}^{\uparrow}:=\frac{[]}{\mathbb{X}}
$$

- HO Merge provides a way of merging two towers.

$$
\frac{f[]}{\mathbb{X}} \circledast \frac{g[]}{\mathbb{Y}}:=\frac{f[g[]]}{\mathbb{X} * \mathbb{Y}}
$$

## Displacement via HO Merge

- Now we have everything we need to incorporate $\star$-shifted sos into the syntactic derivation:



## Collapsing the tower

- Finally, we need a syntactic operation to lower a higher-order so back down to an ordinary so. We can define Lower simply as the identity function.
(16) Lower (def.)

$$
\downarrow m:=m \text { id }
$$

$$
(\downarrow)::=\frac{\mathbb{t}}{\mathbb{t}} \rightarrow \mathbb{t}
$$

- Lowering the higher-order so gives us the same result as the copy theory of movement!

$$
\left.\left.\downarrow\left(\frac{\text { Yasu } *[]}{[\text { Andreea [likes Yasu }]]}\right)=[\text { Yasu [Andreea [likes Andreea }]\right]\right]
$$

## FROM STRUCTURE TO STRINGS

- Since we're adopting a radically derivational perspective, we don't really need to refer to the outputted structural representations for anything. Let's simplify things and just treat Merge as concatenation (see Kobele 2006 for a thorough demonstration that this is harmless).
(17) $\mathbb{X} * \mathbb{Y}:=\mathbb{X}: \mathbb{Y}$
- On this view, it's natural to redefine $\star$ such that the local value has null phonological content:
(18) $\star \mathbb{X}:=\frac{\mathbb{X} *[]}{\varnothing}$


## SIMPLIFYING FURTHER II

(19) Yasu, Andreea likes.
(20) $\quad\left(\left(\text { Andreea }{ }^{\uparrow}\right) \circledast\left(\left(\text { likes }^{\uparrow}\right) \circledast(\star \text { Yasu })\right)\right)^{\downarrow}$ $=(\lambda k . \text { Yasu } *(k(\text { Andreea : likes : } \varnothing)))^{\downarrow}$
$=$ Yasu : Andreea : likes : $\varnothing$

Extension to wh-movement

## INCORPORATING A BASIC FEATURE CALCULUS

- In order to extend the proposal to wh-movement, we must make it more syntactically realistic. We'll treat sos as feature bundles; Merge concatenates feature bundles.
- We can now redefine merge as a feature sensitive operation.
- Merging an so $\mathbb{X}$ with an uninterpretable $Q$ feature with another so $(\mathbb{Y}: \mathbb{Z})$ results in ungrammaticality $(\sharp)$, unless the head $\mathbb{Y}$ carries an interpretable $Q$ feature.
(21) a. $\quad \mathbb{X}_{[u Q]} *\left(\mathbb{Y}_{[i Q]}: \mathbb{Z}\right)=\mathbb{X}: \mathbb{Y}_{[i Q]}: \mathbb{Z}$
b. $\quad \mathbb{X}_{[u Q]} * \mathbb{Y}=\#$
c. $\mathbb{X} * \mathbb{Y}=\mathbb{X}: \mathbb{Y}$
- This needs to be generalised, but this will do for now.


## INCORPORATING A BASIC FEATURE CALCULUS II

- We can now additionally redefine ( $\star$ ) in a feature sensitive way:
(22) $\star \mathbb{X}_{[d, u Q]}:=\frac{\mathbb{X}_{[d, u Q]}}{\varnothing_{[d]}}$
- We now have everything we need to account for feature-driven movement in a more realistic way:
(23) a. $\quad\left(\left(\mathrm{C}_{[i Q]}^{\uparrow}\right) \circledast\left(\left(\text { Andreea }^{\dagger}\right) \circledast\left(\left(\text { likes }^{\dagger}\right) \circledast\left(\star \text { who }_{[d, u Q]}\right)\right)\right)^{\downarrow}\right.$
b. $\quad\left(\lambda k . \text { who }_{[d, u Q]} * k\left(\mathrm{C}_{[i Q]}: \text { Andreea : likes : } \varnothing_{[d]}\right)\right)^{\downarrow}$
c. who $_{[d]}: \mathrm{C}_{[i Q]}$ : Andreea : likes : $\varnothing_{[d]}$


## A syntactic payoff: generalised order preservation

- order preservation effects are pervasive in syntax (Müller 2001), e.g., superiority effects in English and multiple wh-fronting languages such as Bulgarian.
(24) a. I wonder who ${ }^{x} t_{x}$ bought what ${ }^{y}$.
b. ${ }^{*}$ I wonder what ${ }^{y}$ who bought $t_{y}$.
(25) a. Koj kakvo kupuva?

Who what buys?
b. *Kakvo koj kupuva?

What who buys?

## Generalised order preservation il

- Order-preservation falls out as the unmarked case in the system outlined here. This is because HO Merge (repeated below) sequences movements from left-to-right.

$$
\frac{f[]}{\mathbb{X}} \circledast \frac{g[]}{\mathbb{Y}}:=\frac{f[g[]]}{\mathbb{X} * \mathbb{Y}}
$$

- We ignore the feature calculus here for ease of exposition:
(26) a. $\quad \downarrow\left(\left((\star\right.\right.$ who $) \circledast\left(\left(\right.\right.$ buys $\left.^{\dagger}\right) \circledast(\star$ what $\left.\left.\left.)\right)\right)\right)$
b. $\quad=\downarrow(\lambda k$. who $*($ what $*(k(\varnothing:$ buys : $\varnothing))))$
c. $=$ who $:$ what $: \varnothing$ : buys : $\varnothing$


## DOING SEMANTICS IN TANDEM

- In this system, semantic computation can proceed in tandem with syntactic computation. We'll assign a single meaning to a wh-expression which will predict that it scopes exactly at the position it's moved to.
- We adopt a generalized Karttunen semantics for wh-expressions they scope over question meanings and return question meanings (Cresti 1995, Charlow 2014, Elliott 2017)
(27) 【who】:= $\lambda k . \bigcup_{\text {person } x} k x$

$$
(e \rightarrow\{t\}) \rightarrow\{t\}
$$

- Note that wh-expressions have a scopal semantics - we can scope them using semantic correlates of Lift and HO Merge (Barker \& Shan 2014).


## Return and Scopal Function Application

- We take the semantic correlate of the syntactic operation Lift to be Return ( $\rho$ ).
(28) $x^{\rho}:=\frac{[]}{x}$

$$
(\rho)::=a \rightarrow(a \rightarrow\{b\}) \rightarrow\{b\}
$$

- We take the semantic correlate of the syntactic operation HO Merge to be Scopal Function Application (S).
(29) $\frac{f[]}{x} \mathrm{~S} \frac{\mathrm{~g}[]}{y}:=\frac{f[g[]]}{\mathrm{A} x y}$


## Semantic computation

- Finally, we take the meaning of $\mathrm{C}_{[i Q]}$ to be singleton-set formation.
$\{$ Andreea likes $x \mid$ person $x$ \}

- Note the isomorphism between the semantic computation and syntactic computation. Both are computed step-by-step, in tandem.
(30)
a. Syntax:

$$
\llbracket \mathrm{C}_{[i Q]} \rrbracket\left(\left(\llbracket \text { Andreea } \rrbracket^{\rho}\right) \mathrm{S}\left(\left(\llbracket \text { likes } \rrbracket^{\rho}\right) \mathrm{S} \llbracket \star \mathrm{who}_{[d, u Q]} \rrbracket\right)\right)
$$

b. Semantics:

$$
\left(\left(\mathrm{C}_{[i Q]}^{\uparrow}\right) \circledast\left(\left(\text { Andreea }^{\uparrow}\right) \circledast\left(\left(\text { likes }^{\dagger}\right) \circledast\left(\star \text { who }_{[d, u Q]}\right)\right)\right)\right)
$$

- There is no need for anything like trace conversion. In the syntax, movement corresponds to scoping the features + phonological content of a syntactic object, in the semantic component, anything with a scopal semantics exhibits interpretive displacement via the same mechanisms.


## Syn-Sem correspondence

- Merge in the syntax corresponds to Function Application in the semantics: $(*) \approx \mathrm{A}$
- When a moved expression is scopal (i.e. interpreted in its derived position):
- Lift in the syntax corresponds to Return in the semantics (in fact, they're polymorphic instantiations of the same function): $(\uparrow) \approx(\rho)$
- HO Merge in the syntax corresponds to Scopal Function Application in the semantics: $(\circledast) \approx S$


## Quantifier Raising

- In this system, quantifier raising simply involves a scopal semantics with a non-movement syntax. There is in fact no need for covert movement.
(31) a. Syntax:

$$
\begin{aligned}
& \text { some linguist } * \text { (hates } * \text { [every philosopher }] \text { ) } \\
& =[\text { some linguist }]: \text { hates }: \text { [every philosopher }]
\end{aligned}
$$

b. Semantics:

$$
\begin{aligned}
& \left(\frac{\exists y[\text { linguist } y \wedge[]]}{y} \mathrm{~S}\left(\frac{[]}{\text { hates }} \mathrm{S} \frac{\forall x[\text { phil } x \rightarrow[]]}{x}\right)\right)^{\downarrow} \\
& =\exists y[\text { linguist } y \wedge \forall x[\text { phil } x \rightarrow y \text { hates } x]]
\end{aligned}
$$

- Note that the unmarked case in this system is surface scope. This is a good prediction for scope-rigid languages like German, but we need to do a little more to get inverse scope.


## Quantifier Raising il

- Barker \& Shan (2014) show that we can derive inverse scope by internally lifting ( $\uparrow \uparrow$ ) the lower quantifier, and (re-)lifting the higher quantifier. Details suppressed here but see Barker \& Shan.

$$
\left.\begin{array}{l}
\left(\frac{\exists y[\text { ling } y \wedge[]]}{y} \mathrm{~S}\left(\frac{[]}{\frac{[]}{\text { hates }}} \frac{\mathrm{S}}{\frac{\forall x[\text { phil } x \rightarrow[]]}{x}}\right)\right)^{\Downarrow} \\
=\left(\frac{\forall x[\text { phil } x \rightarrow[]]}{\exists y[\text { ling } y \wedge[]]}\right. \\
y \text { hates } x
\end{array}\right)^{\Downarrow}=\forall x[\text { phil } x \rightarrow \exists y[\text { ling } y \wedge y \text { hates } x]] .
$$

## QR AND SCOPE RIGID LANGUAGES I

- Let's assume that internal lift is freely available in English, without any syntactic reflex. This predicts the availability of scopal ambiguities.
- Languages such as Japanese and Hindi are ordinarily scope rigid however; scopal ambiguities may arise if a scopal expression is scrambled.
(32) a. Dareka-ga daremo-o sonkeisiteiru someone-NOM everyone-ACC admire some > every, *every > some
b. daremo-o dareka-ga $t$ sonkeisiteiru everyone-ACC someone-NOM $t$ admire some > every, every > some


## QR and scope rigid languages il

- There's a very natural perspective to adopt in languages such as Japanese and Hindi - internal lift isn't freely available, rather, it is the semantic reflex of s-Merge ( $\star$ ).


## QR and scope rigid languages ili

(33) Syntax:
$\left([\text { Some philosopher }]^{\uparrow} \circledast\left(\left(\right.\right.\right.$ hates $\left.^{\uparrow}\right)(\star$ [every linguist $\left.\left.\left.]\right)\right)\right)^{\downarrow}$
$=[$ every linguist $]:[$ some philosopher $]:[$ hates $]: \varnothing$
(34) Semantics:
$\left(\left(\llbracket \text { some philosopher } \rrbracket^{\rho}\right) S\left(\left(\llbracket \text { hates }^{\rho} \rrbracket^{\rho \circ \rho}\right) S\left(\llbracket \text { every linguist } \rrbracket^{\Uparrow}\right)\right)\right)^{\Downarrow}$
$\left.=\left(\frac{\llbracket \text { every linguist } \rrbracket \lambda x[]}{\llbracket \text { some philosopher } \rrbracket \lambda y[]}\right)^{y \text { hates } x}\right)^{\Downarrow}$
$=\forall x[$ ling $x \rightarrow \exists y[$ phil $y \wedge y$ hates $x]]$

## QR and scope rigid languages iv

- But scrambling doesn't just give rise to inverse scope - it gives rise to scopal ambiguities
- We can account for this by simply positing an implicational rather than a one-to-one relationship between ( $\uparrow \uparrow$ ) and ( $\star$ ) - ( $\uparrow$ ) (in Japanese) implies ( $\star$ ) in the syntactic computation, but not vice versa.
- In other words, $(\uparrow \uparrow)$ is an optional semantic reflex of $(\star)$, but it is not permitted in the absence of $(\uparrow \uparrow)$.

Conclusion

## FUTURE PROSPECTS

- How to account for the following within this framework:
- locality - has a natural treatment in terms of obligatory lowering; see Charlow (2014) on scope islands.
- Successive-cyclicity - has a natural treatment in terms of lowering followed by re-s-MERgeing.
- Reconstruction - see Barker \& Shan (2014) for a detailed treatment consistent with this system.
- Late merge - more difficult, but can be analyzed without copies once more sophisticated mechanisms for scope-taking (indexed continuations) are adopted. I'll come back to this in future work.
- In this talk, I've suggested that we can take a cue from the formal semantics literature, and treat syntactic displacement as a kind of syntactic scope-taking.
- This move has a major conceptual advantage - semantic computation can proceed in tandem with syntactic computation. There is no need for any ad-hoc mechanism for interpreting movement.
- We've mentioned a couple of interesting empirical payoffs - the analysis of generalised order preservation, and scrambling.
- A more thorough exploration of the properties of this system will have to wait for another time!


## Thanks for listening!

## References I

( Barker, Chris \& Chung-chieh Shan. 2014. Continuations and natural language. (Oxford studies in theoretical linguistics 53). Oxford University Press. 228 pp.
( Charlow, Simon. 2014. On the semantics of exceptional scope.
囯 Chomsky, Noam. 1995. The minimalist program. (Current Studies in Linguistics 28). Cambridge Massachussetts: The MIT Press. 420 pp.
Collins, Chris \& Edward Stabler. 2016. A Formalization of Minimalist Syntax. Syntax 19(1). 43-78.
Cresti, Diana. 1995. Extraction and reconstruction. Natural Language Semantics 3(1). 79-122.
Elliott, Patrick D. 2017. Nesting habits of flightless wh-phrases. unpublished manuscript. University College London.

## References il

围 Fox, Danny. 2002. Antecedent-contained deletion and the copy theory of movement. Linguistic Inquiry 33(1). 63-96.
Fox, Danny \& Kyle Johnson. 2016. QR is restrictor sharing. In Kyeong-min Kim et al. (eds.), Proceedings of the $33^{\text {rd }}$ West Coast Conference on Formal Linguistics, 1-16. Somerville, MA: Cascadilla Proceedings Project.
(Reim, Irene \& Angelika Kratzer. 1998. Semantics in generative grammar. (Blackwell textbooks in linguistics 13). Malden, MA: Blackwell. 324 pp.
(Kobele, Gregory. 2006. Generating copies - An investigation into structural identity in language and grammar. UCLA dissertation.
(iüller, Gereon. 2001. Order Preservation, Parallel Movement, and the Emergence of the Unmarked. In.

## References III

雷 Sauerland, Uli. 2004. The interpretation of traces. Natural Language Semantics 12(1). 63-127.
國 Stabler, Edward. 1997. Derivational Minimalism. In, 68-95.

