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Overview

• Current theories of movement at give rise to conceptual worries
vis a vis interface requirements. Is Internal Merge causing more
problems than it solves?

• The goal here: develop a radically different perspective on
syntactic displacement as higher-order structure building,
borrowing well-established standard mechanisms from
Montagovian semantics for dealing with semantic displacement
(i.e., scope).

• Some payoffs include:
• No need for trace conversion.
• An account of Müller’s (2001) generalized order preservation.
• An account of the interaction between scrambling and

scope-taking in scope-rigid languages such as Japanese.
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Roadmap

• A (non-standard) overview of movement in minimalist syntax +
some conceptual worries.

• An analogy between overt syntactic displacement and the
QR-analysis of semantic displacement.

• Reifying the analogy in a purely derivational system via
higher-order structure building.

• An analysis of wh-movement.

• An extension to quantifier raising and scrambling.

• Finish!
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Formal Preliminaries



Types for syntax

• Since this is a theory talk, let’s try to be precise about the
operations we’re using.

• Types will help us give an explicit treatment of syntactic operations
as functions.

• Fortunately, we’re only going to need one primitive type: Let 𝕥 be
the type of a Syntactic Object (so). Whenever I talk about
syntactic types or variables over sos, I’ll use 𝕓𝕝𝕒𝕔𝕜𝕓𝕠𝕒𝕣𝕕 font.
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Function types

• We can’t really do anything interesting with just our primitive type
t. We’ll also avail ourselves of function types.

• I’ll use (→) as the constructor for function types (cf., e.g., Heim &
Kratzer 1998 who use ⟨.⟩).

• a → b is the type of a function from things of type a to
things of type b.

• Where Heim & Kratzer write ⟨⟨𝑒, 𝑡⟩, 𝑡⟩, i’ll write (𝑒 → 𝑡) → 𝑡.
• N.b. that (→) is right-associative, so 𝑒 → 𝑒 → 𝑡 ≡ 𝑒 → (𝑒 → 𝑡).
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Merge

• We’ll take as our starting point the hypothesis that the basic
structure-building operation in natural language is Merge
(Chomsky 1995).

• We define Merge in a pretty standard way – it’s a function that
takes two sos, and returns a new (unlabelled) so.

(1) Merge (def.)
𝕏 ∗ 𝕐 ≔ [𝕏 𝕐] ∷= 𝕥 → 𝕥 → 𝕥

• Note: following, e.g., Stabler (1997), we assume that merge is
asymmetric:

𝕏 ∗ 𝕐 ≠ 𝕐 ∗ 𝕏
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Merge

• Merge successively applies to sos constructing a structured
representation, as in (2):

(2) [Andreea [likes Yasu]]
∗ ≔ 𝕥 → 𝕥 → 𝕥

Andreea ≔ 𝕥 [likes Yasu]
∗ ≔ 𝕥 → 𝕥 → 𝕥

likes ≔ 𝕥 Yasu ≔ 𝕥

• Important: the tree is a graph of the derivation, rather than a
representation in its own right.
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An aside on type 𝕥

• Let the type of the atomic unit of syntactic computation (a lexical
object, root, etc.), be L. This allows us to define 𝕥 recursively.

𝕥 ≔ L | [𝕥]
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Movement in Merge-based
frameworks



Internal Merge i

• Certain expressions (such as wh-expressions) are pronounced in
positions other than where they’re interpreted – or, more precisely,
where a part of their meaning (the variable) is interpreted.

• The standard approach to this phenomenon in minimalism is
Internal Merge.

• This can be cashed out in two different ways: the copy theory and
the multidominance theory of movement.

• I’ll just present the copy theory for exposition, but
multidominance approaches are subject to the same issues.
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Internal Merge ii

• According to the copy theory, movement involves merging a copy
of an so contained within the derived syntactic structure.
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Internal Merge iii

(3)

...

...

which boy

...

CQ ...

Josie ...

hugs ...

which boy

• It’s not trivial to implement

Internal Merge as a function. It

should traverse through the

constructed syntactic

representation for the so to be

copied-and-remerged (although

see Collins & Stabler 2016 for a

local formulation).
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Trace conversion i

• Regardless of how Internal Merge is implemented, the
representation interpreted by the semantic component must look
something like this (Fox 2002, Sauerland 2004):
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Trace conversion ii

{ J hugs 𝑥 ∣ boy 𝑥 }

𝜆𝑘 .  ⋃
boy 𝑥

𝑘 𝑥

which boy

𝜆𝑥′  ∶ boy 𝑥′ .  { J hugs 𝑥′ }

𝑖 ...

CQ ...

Josie ...

hugs 𝜄𝑥[boy 𝑥 ∧ 𝑥 = 𝑔𝑖]

the𝑖 boy

(4) Jthe𝑖K𝑔 = 𝜆𝑃 . 𝜄𝑥[𝑃 𝑥 ∧ 𝑥 = 𝑔𝑖]

(5) Predicate abstraction (def.)J[𝑖 𝕏]K𝑔 = 𝜆𝑥 .  J𝕏K𝑔[𝑖→𝑥]
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Trace conversion iii

• How do we get from a copy-theoretic representation to the
representation required by the semantics?

• First off, we need a syntactic operation that applies to the lower
copy, and replaces the determiner with the𝑖 .

(6) Trace Conversion (def.)
tc [𝔻 ℕ]𝑖 ≔ [the𝑖 ℕ]

• We also need a syntactic operation that places a binding index
immediately below the higher copy, in order to trigger abstraction
over the lower copy.
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Trace conversion iv

• Due to the demands of the interface, much of the conceptual
appeal of Internal Merge is lost.

• Trace Conversion = the name for a problem, rather than a
solution (although, see Fox & Johnson 2016 for a more principled
account).

• Goal for the next section: an approach which retains the
conceptual appeal of Internal Merge, where
meaning-computation can proceed in tandem with movement
derivations, without the need for syntactic magic, such as Trace
Conversion, and binding index insertion.
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Higher-order structure building



The discussion ahead

• Exploring a (failed?) analogy with between displacement as
Quantifier Raising.

• Reifying the analogy in a derivational framework.

• Introducing our players:

scopal-Merge (⋆) Our version of internal merge.

Lift (↑) Converting an so into a trivial scope-taker.

Higher Order Merge (⊛) A combinatorics for scopal syntactic values.
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An analogy with QR i

• Before we present our analysis, let’s entertain an analogy.

• Imagine that derivation graphs are, themselves, fully-fledged
representations.

(7) [Andreea [likes Yasu]]
∗

Andreea ≔ 𝕥 [likes Yasu]
∗

likes ≔ 𝕥 Yasu ≔ 𝕥
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An analogy with QR ii

• Now, let’s define a new unary operation, s-Merge (i.e., scopal
merge), which we’ll write as (⋆). It’s just defined in terms of merge
+ lambdas and variables.

(8) ⋆ 𝕏 ≔ 𝜆𝑘 . 𝕏 ∗ (𝑘 𝕏) (⋆) ∷= 𝕥 → (𝕥 → 𝕥) → 𝕥

• (⋆) takes a so, and shifts it into a function that takes a function
from sos to sos, and returns an so.

(9) ⋆ Andreea = 𝜆𝑘 . Andreea ∗ (𝑘 Andreea) (𝕥 → 𝕥) → 𝕥

• You can think of ⋆ as a function from an so to something that
takes scope over sos.
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An analogy with QR iii

• If we apply (⋆) to an so over the course of our derivation, we end
up with a type mismatch. Merge takes two arguments of type 𝕥.

...

Yasu 7

∗ ∷= 𝕥 → 𝕥 → 𝕥

𝕥
likes

(𝕥 → 𝕥) → 𝕥

⋆

Andreea
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An analogy with QR iv

• In order to resolve this type mismatch let’s assume we can scope
out the ⋆−shifted so via QR – assuming that something of type
(𝕥 → 𝕥) → 𝕥 binds a type 𝕥 variable.

• The result will be a kind of derivational scope; (⋆ Andreea)
contributes the so Andreea locally, and the function
(𝜆𝕏 . Andreea ∗ 𝕏) takes scope.

• When we compute the result, we will end up with a copy-theoretic
representation.
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An analogy with QR v

[𝜆𝑘 . Andreea ∗ (𝑘 Andreea)] (𝜆𝕏 .[Yasu [likes 𝕏]])

=Andreea ∗ ([𝜆𝕏 .[Yasu [likes 𝕏]]] Andreea)

=Andreea ∗ ([Yasu [likes Andreea]])

=[Andreea [Yasu [likes Andreea]]]
fa

𝜆𝑘 . Andreea ∗ (𝑘 Andreea)
⋆ Andreea

𝜆𝕏 .[Yasu [likes 𝕏]]

𝜆𝕏 [Yasu [likes 𝕏]]
∗

Yasu [likes 𝕏]
∗

likes 𝕏
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The analogy breaks down

• Unfortunately, the analogy with QR breaks down – since
derivation graphs are not themselves representations, it doesn’t
really make sense conceptually to posit an operation of QR that
applies to a derivation graph.

• What we want, intuitively, is a way of compositionally integrating
scopal values into a computation.

• We’ll model our approach on Barker & Shan’s (2014) continuation
semantics.
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Tower notation for scopal values

• Scopal values are of type (a → b) → b. Barker & Shan (2014)
introduce a convenient notational shortcut for scopal types –
tower types.

(10)
b

a
≔ (a → b) → b

• Similarly, scopal values themselves can be rewritten using tower
notation:

(11)
𝑓 []

𝑥
≔ 𝜆𝑘 . 𝑓 (𝑘 𝑥)

22



Applying tower notation to quantifiers

• Standard entries for quantificational expressions can be rewritten
using tower notation, like so:

(12) everyone = 𝜆𝑘 . ∀𝑥[𝑘 𝑥] ∷= (e → t) → t

=
∀𝑥[]

𝑥
∷=

t

e
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Back to ⋆

• We can now rewrite the syntactic operation s-Merge (⋆) using
tower notation:

(13) ⋆ 𝕏 ≔
𝕏 ∗ []

𝕏
(⋆) ∷=

𝕥

𝕥

• Recall that ⋆−shifting a so gives rise to a type mismatch in the
derivation. Let’s explore a different way of incorporating
⋆−shifted sos into the derivation.
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Lift and HOMerge i

• In order to do this, we need to define two new derivational
operations.

• Lift takes an so and returns a trivially scopal/higher-order so.

(14) Lift (def.)

𝕏↑ ≔ 𝜆𝑘 . 𝑘 𝕏 (↑) ∷= 𝕥 →
𝕥

𝕥
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Lift and HOMerge ii

• Higher Order Merge provides us with a way of merging two
higher-order/scopal syntactic objects.

(15) Higher Order Merge (def.)

𝑚 ⊛ 𝑛
≔ 𝜆𝑘 . 𝑚 (𝜆𝕏 . 𝜆𝑛 . (𝜆𝕐 . 𝜆𝑘 . (𝕏 ∗ 𝕐)))

(⊛) ∷=
𝕥

𝕥
→

𝕥

𝕥
→

𝕥

𝕥
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Lift and HOMerge iii

• In order to see what’s going on, it will be easier to rewrite these
functions using tower notation.

• Lift coverts an so into a trivial tower.

𝕏↑ ≔
[]

𝕏

• HO Merge provides a way of merging two towers.

𝑓 []

𝕩
⊛

𝑔 []

𝕐
≔

𝑓 [𝑔 []]

𝕏 ∗ 𝕐
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Displacement via HOMerge

• Now we have everything we need to incorporate ⋆−shifted sos
into the syntactic derivation:

Yasu ∗ []

[Andreea [likes Yasu]]

⊛

[]

Andreea

Andreea↑

Yasu ∗ []

[likes Yasu]

⊛

[]

likes

likes↑

Yasu ∗ []

Yasu

⋆ Yasu 28



Collapsing the tower

• Finally, we need a syntactic operation to lower a higher-order so
back down to an ordinary so. We can define Lower simply as the
identity function.

(16) Lower (def.)

↓ 𝑚 ≔ 𝑚 id (↓) ∷=
𝕥

𝕥
→ 𝕥

• Lowering the higher-order so gives us the same result as the copy
theory of movement!

↓   (
Yasu ∗ []

[Andreea [likes Yasu]]
) = [Yasu [Andreea [likes Andreea]]]
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From structure to strings

• Since we’re adopting a radically derivational perspective, we don’t
really need to refer to the outputted structural representations for
anything. Let’s simplify things and just treat Merge as
concatenation (see Kobele 2006 for a thorough demonstration that
this is harmless).

(17) 𝕏 ∗ 𝕐 ≔ 𝕏 ∶ 𝕐

• On this view, it’s natural to redefine ⋆ such that the local value has
null phonological content:

(18) ⋆ 𝕏 ≔
𝕏 ∗ []

∅
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Simplifying further ii

(19) Yasu, Andreea likes.

(20) ((Andreea↑) ⊛ ((likes↑)  ⊛ (⋆Yasu)))↓

= (𝜆𝑘 .Yasu ∗ (𝑘 (Andreea ∶ likes ∶ ∅)))↓

= Yasu ∶ Andreea ∶ likes ∶ ∅
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Extension to wh-movement



Incorporating a basic feature calculus

• In order to extend the proposal to wh-movement, we must make it
more syntactically realistic. We’ll treat sos as feature bundles;
Merge concatenates feature bundles.

• We can now redefine merge as a feature sensitive operation.
• Merging an so 𝕏 with an uninterpretable 𝑄 feature with another

so (𝕐 ∶ ℤ) results in ungrammaticality (♯), unless the head 𝕐
carries an interpretable 𝑄 feature.

(21) a. 𝕏[ᵆ𝑄] ∗ (𝕐[𝑖𝑄] ∶ ℤ) = 𝕏 ∶ 𝕐[𝑖𝑄] ∶ ℤ

b. 𝕏[ᵆ𝑄] ∗ 𝕐 = ♯

c. 𝕏 ∗ 𝕐 = 𝕏 ∶ 𝕐

• This needs to be generalised, but this will do for now.
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Incorporating a basic feature calculus ii

• We can now additionally redefine (⋆) in a feature sensitive way:

(22) ⋆ 𝕏[𝑑,ᵆ𝑄] ≔
𝕏[𝑑,ᵆ𝑄]

∅[𝑑]

• We now have everything we need to account for feature-driven
movement in a more realistic way:

(23) a. ((C↑
[𝑖𝑄]) ⊛ ((Andreea↑) ⊛ ((likes↑) ⊛ (⋆who[𝑑,ᵆ𝑄]))))↓

b. (𝜆𝑘 . who[𝑑,ᵆ𝑄] ∗ 𝑘 (C[𝑖𝑄] ∶ Andreea ∶ likes ∶ ∅[𝑑]))↓

c. who[𝑑] ∶ C[𝑖𝑄] ∶ Andreea ∶ likes ∶ ∅[𝑑]
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A syntactic payoff: generalised order preservation

• order preservation effects are pervasive in syntax (Müller 2001),
e.g., superiority effects in English and multiple wh-fronting
languages such as Bulgarian.

(24) a. I wonder who𝑥 𝑡𝑥 bought what𝑦 .

b. *I wonder what𝑦 who bought 𝑡𝑦 .

(25) a. Koj
Who

kakvo
what

kupuva?
buys?

b. *Kakvo
What

koj
who

kupuva?
buys?
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Generalised order preservation ii

• Order-preservation falls out as the unmarked case in the system
outlined here. This is because HO Merge (repeated below)
sequences movements from left-to-right.

𝑓 []

𝕩
⊛

𝑔 []

𝕐
≔

𝑓 [𝑔 []]

𝕏 ∗ 𝕐

• We ignore the feature calculus here for ease of exposition:

(26) a. ↓  (((⋆ who) ⊛ ((buys↑) ⊛ (⋆ what))))

b. =↓  (𝜆𝑘 . who ∗ (what ∗ (𝑘 (∅ ∶ buys ∶ ∅))))

c. = who ∶ what ∶ ∅ ∶ buys ∶ ∅
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Doing semantics in tandem

• In this system, semantic computation can proceed in tandem with
syntactic computation. We’ll assign a single meaning to a
wh-expression which will predict that it scopes exactly at the
position it’s moved to.

• We adopt a generalized Karttunen semantics for wh-expressions –
they scope over question meanings and return question meanings
(Cresti 1995, Charlow 2014, Elliott 2017)

(27) JwhoK ≔ 𝜆𝑘 .  ⋃
person 𝑥

𝑘 𝑥 (𝑒 → { 𝑡 }) → { 𝑡 }

• Note that wh-expressions have a scopal semantics – we can scope
them using semantic correlates of Lift and HO Merge (Barker &
Shan 2014).
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Return and Scopal Function Application

• We take the semantic correlate of the syntactic operation Lift to
be Return (𝜌).

(28) 𝑥𝜌 ≔
[]

𝑥
(𝜌) ∷= a → (a → { b }) → { b }

• We take the semantic correlate of the syntactic operation HO
Merge to be Scopal Function Application (S).

(29)
𝑓 []

𝑥
 S 

𝑔 []

𝑦
≔

𝑓 [𝑔 []]

A 𝑥 𝑦
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Semantic computation

• Finally, we take the meaning of C[𝑖𝑄] to be singleton-set formation.
{Andreea likes 𝑥 ∣ person 𝑥 }

𝜆𝑥 .  { 𝑥 }
C[𝑖𝑄]

⋃
person 𝑥

[]

Andreea likes 𝑥
S

[]

Andreea
Andreea𝜌

⋃
person 𝑥

[]

𝜆𝑦 . 𝑦 likes 𝑥
S

[]

𝜆𝑥𝑦 . 𝑦 likes 𝑥
likes𝜌

⋃
person 𝑥

[]

𝑥
who
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An isomorphism between semantic and syntactic computation

• Note the isomorphism between the semantic computation and
syntactic computation. Both are computed step-by-step, in
tandem.

(30) a. Syntax:JC[𝑖𝑄]K ((JAndreeaK 𝜌) S ((JlikesK 𝜌) S  J⋆ who[𝑑,ᵆ𝑄]K))

b. Semantics:
((C↑

[𝑖𝑄]) ⊛ ((Andreea↑) ⊛ ((likes↑) ⊛ (⋆who[𝑑,ᵆ𝑄]))))

• There is no need for anything like trace conversion. In the syntax,
movement corresponds to scoping the features + phonological
content of a syntactic object, in the semantic component, anything
with a scopal semantics exhibits interpretive displacement via the
same mechanisms.
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Syn-Sem correspondence

• Merge in the syntax corresponds to Function Application in
the semantics: (∗) ≈ A

• When a moved expression is scopal (i.e. interpreted in its derived
position):

• Lift in the syntax corresponds to Return in the semantics (in fact,
they’re polymorphic instantiations of the same function): (↑) ≈ (𝜌)

• HO Merge in the syntax corresponds to Scopal Function
Application in the semantics: (⊛) ≈ S
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Quantifier Raising

• In this system, quantifier raising simply involves a scopal
semantics with a non-movement syntax. There is in fact no need
for covert movement.

(31) a. Syntax:
some linguist ∗ (hates ∗ [every philosopher])
= [some linguist] ∶ hates ∶ [every philosopher]

b. Semantics:

(
∃𝑦[linguist 𝑦 ∧ []]

𝑦
 S  (

[]

hates
 S 

∀𝑥[phil 𝑥 → []]

𝑥
))

↓

= ∃𝑦[linguist 𝑦 ∧ ∀𝑥[phil 𝑥 → 𝑦 hates 𝑥]]

• Note that the unmarked case in this system is surface scope. This is
a good prediction for scope-rigid languages like German, but we
need to do a little more to get inverse scope. 41



Quantifier Raising ii

• Barker & Shan (2014) show that we can derive inverse scope by
internally lifting (⇈) the lower quantifier, and (re-)lifting the
higher quantifier. Details suppressed here but see Barker & Shan.

⎛
⎜
⎜
⎜
⎝

[]

∃𝑦[ling 𝑦 ∧ []]

𝑦

 S 
⎛
⎜
⎜
⎜
⎝

[]

[]

hates

 S 

∀𝑥[phil 𝑥 → []]

𝑥

⎞
⎟
⎟
⎟
⎠

⎞
⎟
⎟
⎟
⎠

⇊

=
⎛
⎜
⎜
⎜
⎝

∀𝑥[phil 𝑥 → []]

∃𝑦[ling 𝑦 ∧ []]

𝑦 hates 𝑥

⎞
⎟
⎟
⎟
⎠

⇊

= ∀𝑥[phil 𝑥 → ∃𝑦[ling 𝑦 ∧ 𝑦 hates 𝑥]]
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QR and scope rigid languages i

• Let’s assume that internal lift is freely available in English, without
any syntactic reflex. This predicts the availability of scopal
ambiguities.

• Languages such as Japanese and Hindi are ordinarily scope rigid
however; scopal ambiguities may arise if a scopal expression is
scrambled.

(32) a. Dareka-ga
someone-nom

daremo-o
everyone-acc

sonkeisiteiru
admire

some > every, *every > some

b. daremo-o
everyone-acc

dareka-ga
someone-nom

𝑡
𝑡

sonkeisiteiru
admire

some > every, every > some
43



QR and scope rigid languages ii

• There’s a very natural perspective to adopt in languages such as
Japanese and Hindi – internal lift isn’t freely available, rather, it is
the semantic reflex of s-Merge (⋆).
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QR and scope rigid languages iii

(33) Syntax:
([Some philosopher]↑ ⊛ ((hates↑) (⋆ [every linguist])))↓

= [every linguist] ∶ [some philosopher] ∶ [hates] ∶ ∅

(34) Semantics:
((Jsome philosopherK 𝜌) S ((JhatesK 𝜌 ∘ 𝜌) S (Jevery linguistK ⇈)))⇊

=
⎛
⎜
⎜
⎜
⎝

Jevery linguistK  𝜆𝑥 []

Jsome philosopherK  𝜆𝑦 []

𝑦 hates 𝑥

⎞
⎟
⎟
⎟
⎠

⇊

= ∀𝑥[ling 𝑥 → ∃𝑦[phil 𝑦 ∧ 𝑦 hates 𝑥]]
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QR and scope rigid languages iv

• But scrambling doesn’t just give rise to inverse scope – it gives rise
to scopal ambiguities

• We can account for this by simply positing an implicational rather
than a one-to-one relationship between (⇈) and (⋆) – (⇈) (in
Japanese) implies (⋆) in the syntactic computation, but not vice
versa.

• In other words, (⇈) is an optional semantic reflex of (⋆), but it is
not permitted in the absence of (⇈).
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Conclusion



Future prospects

• How to account for the following within this framework:
• locality – has a natural treatment in terms of obligatory lowering;

see Charlow (2014) on scope islands.
• Successive-cyclicity – has a natural treatment in terms of lowering

followed by re-s-Mergeing.
• Reconstruction – see Barker & Shan (2014) for a detailed treatment

consistent with this system.
• Late merge – more difficult, but can be analyzed without copies

once more sophisticated mechanisms for scope-taking (indexed
continuations) are adopted. I’ll come back to this in future work.
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Summing up

• In this talk, I’ve suggested that we can take a cue from the formal
semantics literature, and treat syntactic displacement as a kind of
syntactic scope-taking.

• This move has a major conceptual advantage – semantic
computation can proceed in tandem with syntactic computation.
There is no need for any ad-hoc mechanism for interpreting
movement.

• We’ve mentioned a couple of interesting empirical payoffs – the
analysis of generalised order preservation, and scrambling.

• A more thorough exploration of the properties of this system will
have to wait for another time!
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Thanks for listening!
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