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Homework

Please read Barker & Shan 2014, chapters 1 and 4; you can find a pdf on
stellar. If you have any questions, feel free to send me them in advance
of next week’s class, and I’ll do my best to address them.
There’s also a brief problem set on stellar, due nextThursday. This is
intended to get you comfortable working with continuations. Like any
subsequent p-sets, it won’t be graded.

1 Why bother with continuations?

If you’re a certain kind of person, the following answer should be sufficient:
playing with new toys is fun.

The longer answer...

• In this seminar, we’re going to be investigating mechanisms via which
meanings get high.

• To put this in a different way, expressions of natural language come with
conventionalized meaning components. Often, meaning components end
up interpreted in places that don’t necessarily correspond to the pronounced
position of the expression they’re associated with.

• Special cases of this include, but are almost certainly not limited to:

– Scope-taking (the focus of the first part of this seminar).

– Presupposition projection (the focus of the latter part of this seminar).

– Other varieties of “projective” content (e.g., expressives, appositives, etc.).

• We have fairly well-established techniques for dealing with these phenom-
ena, e.g., quantifier raising for scope (May 1977, Heim & Kratzer 1998,
etc.), trivalence for presupposition projection (Peters 1979, George 2010,
etc.), and conventional implicature for expressives and appositives (Potts
2005, McCready 2010, Gutzmann 2015, etc.) – which aren’t without their
problems, as we’ll see.
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• Continuations provide a powerful abstraction for modeling meaning compo-
nents “getting high” in a more general, uniform way.4

4 This goes beyond just meaning, and can
be generalized to, e.g., phonological and
syntactic features. See Elliott 2019c.

• This doesn’t automatically make them preferable, but if we can get away
with reducing our set of theoretical primitives while maintaining the same
empirical coverage, we should at least pursue the possibility.

• Continuations were originally developed5 by computer scientists in order to
5 Or rather, discovered. See, e.g., Danvy
& Filinski (1992) and Wadler (1994) for
important foundational work on delim-
ited continuations – the variety we’ll be
discussing in this course.

account for computations that are, in some sense, delayed until later on. As
such, they’re especially well-suited to modelling meaning components, the
evaluation of which is delayed until later in the derivation.

– See e.g., Barker & Shan (2014) and related works for a rich literature
devoted to applying continuations to scope taking.

– Grove (2019) develops a theory of presupposition projection as a scopal
phenomenon, using continuations.

– de Groote (2006) uses continuations to develop a compositional dynamic
semantics (another important reference is Charlow 2014).

– In recent work, I’ve used continuations to model non-local readings of
expressive adjectives (Elliott 2019b) and overt movement (Elliott 2019c)

• One of the design features of continuation semantics that is of special inter-
est to us is its built-in left-to-right bias.

• One thing we’ll be thinking about in some depth is how meaning that “gets
high”, such as scope-takers, interact with anaphoric expressions and other
dependees.

• As has been observed for quite some time, interaction between scope and
anaphora exhibits a leftness bias.

(1) Every student𝑖’s mother adores their𝑖 advisor. (2) *Their𝑖 advisor adores every student𝑖’s mother.

• The contrast above is an example of a weak crossover violation.

• Roughly, weak crossover can be stated as follows:

(3) Weak Crossover (wco)
Scope may feed binding unless the bound expression precedes the scope-
taker.

• We’d like to explore the possibility, tentatively, that weak crossover isn’t
just about quantificational scope, but parallel effects can be observed with
projective meanings more generally.

• I’ll give you a couple of examples here to whet your appetite, although we
won’t get back to this until quite a bit later in the course.
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• First, I’d like to suggest that presupposition projection can feed anaphora:

(4) Daniel doesn’t know Paul has a sister𝑥, although he has seen her𝑥.

• Focus on the construal where the indefinite takes scope below the inten-
sional verb. Nevertheless, anaphora is possible. The natural way to think
about this is as presupposition projection feeding anaphora:6

6 A cautionary note: surprisingly, this
doesn’t follow from standard dynamic
theories (such as Heim 1982, Beaver 2001),
since presuppositions are themselves
static. A natural move is to instead treat
presuppositions as themselves dynamic
statements; see Elliott & Sudo (2019) for a
theory with this character.

(5) Paul has a sister Daniel doesn’t know Paul has a sister,
although he has seen her.

• Having established that presupposition projection can feed anaphora, let’s
see what happens when the pronoun is made to precede the presupposition
trigger:

(6) #Her𝑥 boss doesn’t know that Paul has a sister𝑥.

• Again, focus on the construal where the indefinite takes scope below the
intensional verb. Our example doesn’t have the reading indicated. This
is surprising given that (a) presuppositions project, (b) presupposition
projection can feed anaphora.

• Our hunch is that, what is to blame here is a more general form of wco
– projective meaning may feed anaphora unless the anaphor precedes the
projector.

• Continuations are sufficiently general, that we can use them to model a wide
variety of phenomena. Since they come with a built in linear bias7, they

7 And, indeed, arguably one of the most
empirically successful accounts of WCO is
couched in terms of continuation semantics
– see Shan & Barker (2006). We’ll discuss
this in several weeks time.

seem like a prime candidate for modeling linear biases more generally.

2 Plan

This week:

• We’re going to develop an understanding of Barker & Shan’s tower notation,
and how to translate from towers to flat representations, and vice versa.

• We’ll get a handle on continuation semantics’ linear bias, encoded in the
composition rules themselves.8

8 This will be necessary preparation for our
discussion of Shan & Barker’s (2006) theory
of crossover.

• We’ll show how to account for scope ambiguities via a combination of
lowering and multi-story towers.

• Scope islands in terms of obligatory evaluation.

Next week:
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• Using continuations to account for generalized con/dis-junction.

• Indexed continuations and a compositional semantics for determiners.

• Continuations and exceptionally scoping indefinites (Charlow 2014).

If we have time:

• Antecedent Contained Deletion.

• Extraposition and scope.

• Expressive adjectives.

3 Some notation conventions

Generally speaking, I’ll be assuming Heim & Kratzer 1998 as background, but
I’ll depart from their notation slightly.

Expressions in the meta-language will be typeset in sans serif.

J[DP John]K ≔ John⏟
individual

Seeing as its primitive, we’ll treat white-space as function application, e.g.:

(7) (𝜆𝑥 . left 𝑥) paul = left paul

Function application associates to the left:

(8) (𝜆𝑥 . 𝜆𝑦 . 𝑦 likes 𝑥) paul sophie ≡ ((𝜆𝑥 . 𝜆𝑦 . 𝑦 likes 𝑥) paul) sophie

Question

Can the following expression be reduced?

(9) (𝜆𝑘 . ∃𝑧[𝑘 𝑧]) (𝜆𝑥 . 𝜆𝑦 . 𝑦  likes 𝑥) Sam

We’ll write types in a fixed width font. We have our familiar primitive
types...
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(10) type ≔ e | t | s | …

...and of course function types. Unlike Heim & Kratzer (1998), who use ⟨.⟩ as
the constructor for a function type, we’ll be using the (more standard (outside
of linguistics!)) arrow constructor (→):

(11) ⟨e, t⟩ ≡ e→ t

The constructor for function types associates to the right:

(12) e→ e→ t ≡ e→ (e→ t)

Question

Which of the following is the correct type for a quantificational deter-
miner?

(13) JeveryK ∶ (e→ t) → (e→ t) → t

(14) JeveryK ∶ e→ t→ (e→ t) → t

4 The Partee triangle

The purpose of this section is to show that continuation semantics is, in a
certain sense, already implicit in the inventory of type-shifters standardly
assumed in formal semantics.

(15) LIFT𝑥 ≔ 𝜆𝑘  . 𝑘 𝑥 LIFT ∶ e→ (e→ t) → t

(16) IDENT 𝑥 ≔ 𝜆𝑦 . 𝑦 = 𝑥 IDENT ∶ e→ e→ t

(17) BE 𝑄 ≔ 𝜆𝑥 . 𝑄 (𝜆𝑦 . 𝑦 = 𝑥) BE ∶ ((e→ t) → t) → e→ t

Evidence for IDENT:

(18) This man is John.

Evidence for BE:
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(19) This man is an authority on heavy metal.

We’ll come back to LIFT in a moment.

Commutative diagrams

The Partee triangle is a commutative diagram. We say that a diagram
commutes if, when there are multiple paths between two points, those
paths are equivalent. The equivalence in (21) is therefore expressed by
the triangle.

(20) The Partee triangle9
9 Partee 1986e (e→ t) → t

e→ t

LIFT

IDENT

BE

(21) ident ≡ BE  ∘  (↑)

Observation: quantificational and non-quantificational DPs can be coordi-
nated:

(22) [Howie and a woman] entered the club

LIFT allows something that, by virtue of its quantificational nature, is an inher-
ent scope-taker, to combine with something that isn’t:10

10 If you’re familiar with Partee & Rooth
1983 you’ll notice that the and that coordi-
nates quantificational DPs (written here as
and𝑄), is just the result of applying their
generalized conjunction rule. We’ll return to
generalized conjunction, and the connection
to continuations next week.

(23) 𝜆𝑘 . ∃𝑥[woman 𝑥  ∧ 𝑘 𝑥] ∧ 𝑘 Howie

𝜆𝑘 . 𝑘 Howie

LIFT

Howie

𝜆𝑄′ . 𝜆𝑘 . ∃𝑥[woman 𝑥  ∧ 𝑘 𝑥] ∧ 𝑄′ 𝑘

𝜆𝑄 . 𝜆𝑄′ . 𝜆𝑘 . 𝑄 𝑘  ∧ 𝑄′ 𝑘
and𝑄

𝜆𝑘 . ∃𝑥[woman 𝑥 ∧ 𝑘 𝑥]

a woman
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4.1 Generalizing the triangle

Based on the way in which LIFT and friends are defined, in theory we could
replace e with any type. Let’s give a more general statement of LIFT and friends
as polymorphic functions:

(24) LIFT 𝑥 ≔ 𝜆𝑘  . 𝑘 𝑥 LIFT ∶ a→ (a→ t) → t

(25) IDENT 𝑥 ≔ 𝜆𝑦 . 𝑦 = 𝑥 IDENT ∶ a→ a→ t

(26) BE 𝑄 ≔ 𝜆𝑥 . 𝑄 (𝜆𝑦 . 𝑦 = 𝑥) BE ∶ ((a→ t) → t) → a→ t

The diagram, of course, still commutes:

(27) The (generalized) Partee triangle
a (a→ t) → t

a→ t

LIFT

IDENT

BE

Why might a polymorphic LIFT be useful? Recall that we used a typed instan-
tiation of LIFT in order to allow a quantificational thing to combine with a
non-quantificational thing. Polymorphic LIFT allows us to type-lift, e.g., a
function that takes multiple arguments:

(28) LIFT (𝜆𝑥𝑦 . 𝑦 hug 𝑥) =
((e→e→t)→t)→t

⏞⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⏞𝜆𝑘 . 𝑘 (𝜆𝑥𝑦 . 𝑦 hug 𝑥)

One tantalizing possibility is that this allow us to combine a non-quantificational
transitive verb with a quantificational DP.

(29) Howie hugged a woman

(30) 7

((e→ e→ t) → t) → t
𝜆𝑘 . 𝑘 (𝜆𝑥𝑦 . 𝑦 hug 𝑥)

LIFT

𝜆𝑥𝑦 . 𝑦 hug 𝑥

(e→ t) → t
𝜆𝑘 . ∃𝑥[woman 𝑥 ∧ 𝑘 𝑥]
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Unfortunately, assuming the usual inventory of composition rules (i.e., function
application, predicate modification, and predicate abstraction), we’re stuck.11 So,

11 Other, more exotic composition rules such
as restrict won’t help either. Take my word
for this!

let’s invent a new one.

Here’s the intuition we’re going to pursue. Let’s look again at the types. One
way of thinking about what LIFT as follows: it takes an a-type thing and adds a
“wrapper”. Quantificational DPs, on the other hand come “pre-wrapped”.

• LIFT  JhugK ∶ ( (e → e → t) → t) → t

• Ja womanK ∶ ( e → t) → t

If we look at the wrapped-up types, we see a function from individuals, and an
individual – namely, two things that can combine via function application.

What we need to accomplish is the following:

• Unwrap lifted hug.

• Unwrap a woman.

• Use function application to combine the unwrapped values.

• Finally, wrap the result back up! Think of the quantificational meaning
as being like a taco – it isn’t really a taco without the wrapper, therefore
we don’t want to throw the wrapper away.

In order to accomplish this, we’ll define a new composition rule: Scopal Func-
tion Application (sfa). We’re going to define sfa in terms of Function Applica-
tion (fa); we haven’t been explicit about how fa is defined yet, so let’s do that
now. We’ll write fa as the infix operator A.12

12 Here, function application is made
bidirectional by overloading – we’ve defined
forwards and backwards application, and
given them the same function name.(31) Function Application (fa) (def.)

a. 𝑓 A 𝑥 ≔ 𝑓 𝑥 A ∶ (a→ b) → a→ b
b. 𝑥 A 𝑓 ≔ 𝑓 𝑥 A ∶ a→ (a→ b) → b
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Scopal Function Application (sfa)

We’ll write sfa as the infix operator S. Note that, since A is overloaded
already, and S is defined in terms of A, S gets overloaded too.

(32) Scopal Function Application (sfa) (def.)
𝑚 S 𝑛 ≔ 𝜆𝑘 . 𝑚 (𝜆𝑎 . 𝑛 (𝜆𝑏 . 𝑘 (𝑎 A 𝑏)))

S ∶ (((a→ b) → t) → t) → ((a→ t) → t) → (b→ t) → t
S ∶ ((a→ t) → t) → (((a→ b) → t) → t) → (b→ t) → t

Now, let’s illustrate how sfa plus generalized LIFT allows to compose a quan-
tificational thing with non-quantificational things, using a simple example
sentence:

(33) Howie hugged some woman.

(34) Step 1: compose some woman with LIFT-ed hug.
((e→ t) → t) → t

𝜆𝑘 . ∃𝑥[woman 𝑥  ∧ 𝑘 (𝜆𝑦 . 𝑦 hug 𝑥)]

S

((e→ e→ t) → t) → t
𝜆𝑘 . 𝑘 (𝜆𝑥𝑦 . 𝑦 hug 𝑥)

LIFT

hug

(e→ t) → t
𝜆𝑘 . ∃𝑥[woman 𝑥 ∧ 𝑘 𝑥]

some woman

(35) Step 2: compose the resulting VP-denotation with
LIFT-ed Howie

(t→ t) → t
𝜆𝑘 . 𝑘 (∃𝑥[woman 𝑥 ∧ Howie hug 𝑥])

S

(e→ t) → t
𝜆𝑘 . 𝑘 Howie

LIFT

Howie

((e→ t) → t) → t
𝜆𝑘 . ∃𝑥[woman 𝑥  ∧ 𝑘 (𝜆𝑦 . 𝑦 hug 𝑥)]

hug some woman

At this point, it’s worth mentioning that we’ve bootstrapped continuation
semantics from an independently motivated type-lifting operation, plus a
natural composition rule sfa; continuations aren’t scary at all!

The 𝜆𝑘 argument is standardly referred to as the continuation argument in the
derivations above. sfa allows the continuation argument to get “passed up”.

We’re now tantalizingly close to deriving the right kind of object for the senten-
tial meaning (namely, something of type t). Only, what we have is something
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of type ( t → t) → t, i.e., a truth value in a “wrapper”. How do we get back
the wrapped up value? We saturate the 𝑘 argument with the identity function.
We’ll call this operation LOWER.13

13 Here we’ve given LOWER the maximally
polymorphic type compatible with the
function definition; in fact, all we need is
(LOWER ∶ ((t→ t) → t) → t).

(36) LOWER (def.)
LOWER 𝑚 ≔ 𝑚 𝑖𝑑 LOWER ∶ ((a→ a) → a) → a

Applying LOWER to the final value in (35) gives us a type t sentential meaning.

(37) LOWER (𝜆𝑘 . 𝑘 (∃𝑥[Howie hug 𝑥]))
= (𝜆𝑘 . 𝑘(∃𝑥[Howie hug 𝑥])) 𝑖𝑑 by def.

= 𝑖𝑑 (∃𝑥[Howie hug 𝑥]) reduce

= ∃𝑥[Howie hug 𝑥] reduce

Let’s zoom back out and see how all the pieces fit together by looking at the
graph of the derivation.

(38) t

LOWER

(t→ t) → t
S

(e→ t) → t

LIFT

Howie

((e→ t) → t) → t
S

((e→ e→ t) → t) → t

LIFT

hug

(e→ t) → t

some woman

So far, we’ve provided an account of how quantificational things compose with
non-quantificational things, by making use of...

• ...an independently motivated type-shifting rule (LIFT)...
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• ...a way to apply LIFT-ed values (S)...

• ...and a way to get an ordinary value back from a LIFT-ed value (LOWER).

This seems pretty nice, but as I’m sure you’ve noticed, things are quickly going
to get pretty cumbersome with more complicated sentences, especially with
multiple quantifiers. Before we go any further, let’s introduce some notational
conveniences.

5 Towers

We’ve been using the metaphor of a wrapper for thinking about what LIFT
does to an ordinary semantic value. Let’s make this a bit more transparent by
introducing a new type constructor for LIFT-ed values.14

14 A type constructor is just a function from
a type to a new type – here, it’s a rule for
taking any type a and returning the type of
the corresponding LIFT-ed value.

(39) Kt a ≔ (a→ t) → t

• Quantificational DPs are therefore of type Kt e (inherently).

• LIFT takes something of type a, and lifts it into something of type Kt a.

Rather than dealing with flat expressions of the simply-typed lambda calculus,
which will become increasingly difficult to reason about, we’ll follow Barker &
Shan 2014 in using tower notation.15 ,16

15 To my mind, one of Barker & Shan’s cen-
tral achievements is simply the introduction
of an accessible notational convention for
reasoning about the kinds of lifted meanings
we’re using here.

16 It’s important to bear in mind that towers
are just syntactic sugar for flat lambda
expressions; we should always be able
to translate back from towers to lambda
expressions. Towers have no privileged
theoretical status, unlike, e.g., Discourse
Representation Structures, but are merely
abbreviations.

Let’s look again at the meaning of a quantificational DP. The 𝑘 argument which
acts as the wrapper is called the continuation argument.

(40) Ordinary quantifier meanings:Jsome womanK ≔ 𝜆𝑘 . ∃𝑥[woman 𝑥  ∧ 𝑘 𝑥]

(41) Quantifiers using tower notation:

Jsome womanK ≔ ∃𝑥[woman 𝑥 ∧ []]

𝑥

(42) Lifted meanings using tower notation:

LIFT (JhugK) = []

𝜆𝑥𝑦 . 𝑦 hug 𝑥

In general:
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(43) Tower notation (def.)
𝑓 []

𝑥
≔ 𝜆𝑘 . 𝑓 (𝑘 𝑥)

We can use tower notation for types too:

(44) Tower types (def.)
b

a
≔ (a→ b) → b ≡ Kb a

We can now redefine our type constructor Kt, and our type-shifting operations
using our new, much more concise, tower notation. These will be our canonical
definitions from now on. We’ll also start abbreviating a LIFT-ed value 𝑎 as 𝑎↑
and a LOWER-ed value 𝑏 as 𝑏↓.

(45) The continuation type constructor Kt (def.)

Kt a ≔
t

a

(46) LIFT (def.)17
17 Thinking in terms of towers, LIFT takes a
value 𝑎 and returns a “trivial” tower, i.e., a
tower with an empty top-story.

𝑎↑ ≔
[]

𝑎
(↑) ∶ a→ Kt a

(47) Scopal Function Application (sfa) (def.)18
18 sfa takes two scopal values – one with a
function on the bottom floor, and the other
with an argument on the bottom floor –
and combines them by (i) doing function
application on the bottom floor, and (ii)
sequencing the scope-takers.

𝑓 []

𝑥
 S 
𝑔 []

𝑦
≔

𝑓 (𝑔 [])

𝑥 A 𝑦
S ∶ Kt (a→ b) → Kt a→ Kt b

(48) LOWER (def.)19

19 LOWER collapses the tower, by saturating
the continuation argument with the identity
function.

(
𝑓 []

𝑝
)

↓

= 𝑓 𝑝 (↓) ∶ Kt t→ t

In order to see the tower notation in action, let’s go through an example in-
volving multiple quantifiers, and show how continuation semantics derives the
surface scope reading:

(49) Some knight chased every thief. ∃ > ∀

First, we combine every thief with lifted chase via sfa:
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(50)
∀𝑥[thief 𝑥 → []]

𝜆𝑦 . 𝑦 chase 𝑥

S

[]

𝜆𝑥𝑦.𝑦 chase 𝑥

∀𝑥[thief 𝑥 → []]

𝑥

Next, the (boxed) VP value combines with some knight via
sfa:

(51)
∃𝑦[knight 𝑦 ∧ ∀𝑥[thief 𝑥 → []]]

𝑦 chase 𝑥

S

∃𝑦[knight 𝑦 ∧ []]

𝑦

∀𝑥[thief 𝑥 → []]

𝜆𝑦 . 𝑦 chase 𝑥

chase every thief

Finally, the resulting tower is collapsed via lower:

(52) ∃𝑦[knight 𝑦 ∧ ∀𝑥[thief 𝑥 → 𝑦 chase 𝑥]]

(
∃𝑦[knight 𝑦 ∧ ∀𝑥[thief 𝑥 → []]]

𝑦 chase 𝑥
)

↓

Let’s zoom out and look at the graph of the syntactic derivation alongside the
graph of the semantic derivation.

merge

DP

some knight

merge

V
chase

DP

every thief

t

LOWER

t

t
S

t

e
some knight

t

e→ t
S

t

e→ e→ t

LIFT

chase

t

e
every thief
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Type-shifting operations are interleaved with syntactic operations. In order to
restrict this system, it seems natural to place an economy constraint on S and
LIFT.20

20 This is very tentative. Working out exactly
how the system outlined here should be
restricted in terms of economy would make
a great student project.

(53) Economy condition on type-shifting
Merge in the syntax is interpreted as A/S in the semantics, whichever is
well-typed. LIFT may apply freely to the extent that it is necessary for the
derivation to proceed.

6 Scopal ambiguities

6.1 Interaction between scope-takers and other operators

Right now, we have a theory which is very good at deriving the surface scope
reading of a sentence with multiple quantifiers. It can also derive some am-
biguities that arise due to interactions of quantifiers and scopally immobile
expressions, such as intensional predicates. Consider, e.g., the interaction
between a universal quantifier and the desire verb want.

(54) Daniele wants to join every group chat. want > ∀; ∀ > want

(54) is ambiguous: (i) if every takes scope below want, it is true if Dani has a
desire about joining every group chat, (ii) if every takes scope over want, it is
true if every group chat is s.t. Dani has a desire to join in.

We actually already have everything we need in order to account for this. In a
nutshell, the two readings correspond to an application of LOWER either below
or above the intensional predicate.21

21 For a fully-fledged treatment of the
examples below, we would of course need to
systematically replace t in our fragment to
some intensional type.

(55) Daniele wants to join every group chat. want > ∀
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...

Daniele 𝜆𝑦 . 𝑦 wants (∀𝑥[groupChat 𝑥 → (pro join 𝑥)])

wants ∀𝑥[groupChat 𝑥 → (pro join 𝑥)]

LOWER

∀𝑥[groupChat 𝑥 → []]

pro join 𝑥
S

PRO↑
∀𝑥[groupChat 𝑥 → []]

𝜆𝑦 . 𝑦 join 𝑥
S

join↑
∀𝑥[groupChat 𝑥 → []]

𝑥

every group chat

(56) Daniele wants to join every group chat. ∀ > want

∀𝑥[groupChat 𝑥 → Dani wants(pro join 𝑥)]

LOWER

∀𝑥[groupChat  → []]

Dani wants (pro join 𝑥)

Daniele ...

wants ...

PRO to join every group chat
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We can schematize what’s going on here by boxing the point of the derivation at
which LOWER applies:

• Daniele (wants  pro↑ S (join↑ S everyGroupChat)
↓
)

• Daniele↑ S (wants↑ S (pro↑ S (join↑ S everyGroupChat)))
↓

If you’re more familiar with a treatment of scope-taking in terms of quantifier
raising, then you can think of LOWER as being the correlate of the landing site
of QR; semantic composition proceeds via S up until we encounter the landing
site, at which point we switch back to “vanilla” semantic composition via A.

6.2 Scope rigidity

As we’ve seen however, when we’re dealing with multiple scopally mobile ex-
pressions (such as quantifiers), continuation semantics derives surface scope
readings by default. It is, therefore, well-suited to languages such as German
and Japanese, which have been argued to display scope-rigidity (modulo seman-
tic reconstruction amongst other potential exceptions).

The following example is from Kuroda (1970).

(57) a. Dareka-ga
someone-nom

subete-no
all-gen

hon-o
book-acc

yonda.
read.

“Someone read all the books.” ∃ > ∀;7 ∀ > ∃
b. Subete-no

all-gen
hon-o
book-acc

dareka-ga
someone-nom

yonda.
read.

“Someone read all the books” ∀ > ∃; ∃ > ∀

There are also, of course, famous environments in English where we observe
apparent scope-rigidity, such as the double-object construction (scope rigidity
in the double-object construction is usually described as scope freezing).

(58) a. Daniele sent a syntactician every picture. ∃ > ∀;7 ∀ > ∃
b. Daniele sent a picture to every syntactician. ∃ > ∀; ∀ > ∃

Bobaljik & Wurmbrand (2012) posit a (violable) economy condition in order to
express the preference for surface scope observed in many languages. Bobaljik
& Wurmbrand make architectural assumptions that we aren’t necessarily com-
mitted to here, but the spirit of Scope Transparency (ScoT) is very much in
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line with a continuation semantics for quantifiers, where surface scope is the
default, and inverse scope will only be achievable via additional application of
the type-shifting rules posited.

(59) Scope Transparency (ScoT)
If the order of two elements at LF is 𝐴 > 𝐵, then the order at PF is 𝐴 > 𝐵.

We still need to account for the availability of inverse scope readings in English,
and other languages however. We’ll do this using multi-story towers.

7 Next week

Hopefully you’re starting to get a feel for what continuations can accomplish
with very few primitives. Next week, we’ll pick up where we left off, with a
discussion of:

• Inverse scope.

• Generalized con/dis-junction.

• Indexed continuations and a semantics for determiners.

• Continuations and exceptional scope

After that, Martin will take over with a re-assessment of QR.
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A Continuations from a categorical perspective

The way we’ve presented continuation semantics here makes crucial use of
three building blocks:

• A type constructor Kt – a way of getting from any type a to an enriched
type-space characterizing continuized values.

• A function LIFT (↑), i.e., a way of lifting a value 𝑎 into a trivial inhabitant
of our enriched type-space.

• A composition rule Scopal Function Application (sfa), i.e., an instruc-
tion for how to do function application in our enriched type-space.

There’s a rich literature in category theory and (derivatively) functional pro-
gramming on how to characterize this kind of construct, together with law-like
properties its components should satisfy in order to qualify as “natural”. In fact,
as discussed in, e.g., Charlow 2018, Elliott 2019a, exactly this kind of general
construct is implicit in a great deal of semantic theory, including for example
theories of pronouns and binding, and theories of focus.

Formally, the triple (Kt, ↑, S) is a special case of an applicative functor, a highly
influential notion in the literature on functional programming (Mcbride &
Paterson 2008); for applications in linguistic semantics see Kiselyov 2017,
Charlow 2018, and Elliott 2019a.

An applicative functor consists of three components: a type constructor F, a
way of lifting an inhabitant of a into an inhabitant of F a, called 𝜂, and a way
of doing function application in the enriched type-space F a, called⊛.22 The

22 If you want pronounceable names for
these things, 𝜂 is called pure in haskell, and
⊛ is called ap (short for application).

components of the applicative functor are additionally subject to a number of
laws. I give the full definition below:
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(60) Applicative functor (def.)
An applicative functor consists of the following three components sub-
ject to homomorphism identity, interchange, and composition laws:
a. 𝐹 ∶ type→ type
b. 𝜂 ∶ a→ F a
c. ⊛ ∶ F (a→ b) → F a→ F b

(61) Homomorphism
𝑓𝜂  ⊛  𝑥𝜂 ≡ (𝑓 𝑥)𝜂

(62) Interchange
(𝜆𝑘 . 𝑘 𝑥)𝜂  ⊛  𝑚 ≣ 𝑚⊛  𝑥𝜂

(63) Identity
𝑖𝑑𝜂  ⊛  𝑚 ≡ 𝑚

(64) Composition
(∘)𝜂  ⊛  𝑢  ⊛  𝑣  ⊛  𝑤 ≡
𝑢  ⊛  (𝑣  ⊛  𝑤)

You can verify for yourselves that the triple (Kt, ↑, S) obeys the applicative laws –
we can call it the continuation applicative.

A related, more powerful abstraction from the functional programming liter-
ature is monads. There is a growing body of literature in linguistic semantics
that explicitly makes use of monads (see, e.g., Shan 2002, Charlow 2014, Grove
2019, and others). A monad, like an applicative functor, is defined as a triple
consisting of a type constructor and two functions. Monads are strictly speak-
ing more powerful than applicative functors; that is to say, if you have a monad
you are guaranteed to have an applicative functor, but not vice versa.

(65) Monad (def.)
A monad consists of the following three components, subject to associa-
tivity and identity.23

23 I’ve defined the monad laws here in
terms ofmap, which we haven’t discussed.
In haskell, this corresponds to fmap. In
category theory, given a functor 𝐹 ∶
𝐶 → 𝐷, this corresponds to the mapping
from morphisms in 𝐶 to morphisms in 𝐷
supplied by the definition of 𝐹. Here, we’ll
definemap as follows: a pair (F,map) is a
functor:

P.s. don’t worry if you don’t know what any
of this means! This is only here as a tidbit
for interested parties.

a. F ∶ type→ type
b. 𝜂 ∶ a→ F a
c. 𝜇 ∶ F (F a) → F a

(66) Associativity
𝜇 ∘ (map 𝜇) ≡ 𝜇 ∘ 𝜇

(67) Identity
𝜇 . (map 𝜂) ≡ join  ∘  𝜂 ≡ 𝑖𝑑

We can define join for the continuation monad as follows:

(68) join (def.)
a. 𝜇 ∶ Kt (Kt a) → Kt a
b. 𝑚𝜇 ≔  𝜆𝑘 . 𝑚 (𝜆𝑐 . 𝑐 𝑘)

In tower terms, join takes a two-level tower and sequences effects from the top
story down:
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(69)

𝑓 []

𝑔 []

𝑥

𝜇

=
𝑓 (𝑔 [])

𝑥

Interestingly, it looks like we can define join just in terms of operations from
the applicative instance; in other words, the continuations in their monadic
guide are no more expressive than continuations in their applicative guise:24

24 Thanks to Julian Grove for discussing this
point with me.(70) 𝑚𝜇 = 𝑚 ∘ (↑)

I leave a demonstration of this fact as an exercise.

B LATEX dojo

Here is the macro I use to typeset towers in LATEX. Declare this in your pream-
ble. You’ll need the booktabs and xparse packages too.

\NewDocumentCommand\semtower{mm}{
\begin{tabular}[c]{@{\,}c@{\,}}
\(#1\)
\\
\midrule
\(#2\)
\\

\end{tabular}
}

A simple two-level tower can now be typeset as follows:

$$\semtower{f []}{x}$$

Resulting in:

𝑓 []

𝑥
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