
Presupposition and delayed evaluation1
1 24.979: Topics in semantics
Getting high: Scope, projection, and evalua-
tion order

Patrick D. Elliott & Martin Hackl
April 23, 2020

Schedule

Homework: Next week, after finishing our discussion of presupposi-
tion and scope, I’ll be talking about the scope of expressive adjectives
such as damn. Please read chapter 4 of Daniel Gutzmann’s 2019 book
The grammar of expressivity, and send me at least one question by next
Wednesday. You can find a pdf on the materials section of the class
page.

April 30 Presupposition cont.; expressives and scope-taking.

May 7 Expressives cont.; student presentation.

May 14(?) Student presentations.

We’d like to tentatively schedule the make-up class for Thursday May
14, in the usual time slot. Please let us know if this won’t work for you,
and we’ll do our best to come up with a date that works for everyone.

1 Satisfaction and its discontents

1.1 Background on the satisfaction theory

One of the most successful theories of presupposition projection, is the “satis-
faction theory”.2

2 Heim 1983, Beaver 2001, a.o.

The satisfaction theory is couched in the Stalnakerian perspective (1976, 2002),
in which the Common Ground (cg) is modeled as a set of possible worlds – the
set of possible worlds compatible with the shared knowledge of the discourse
participants.

Informally, the cg is the grand conjunction of all propositions mutually be-
lieved to be true by the discourse participants.

Likewise, sentences are taken to denote propositions – which can be character-
ized as a set of possible worlds.

2 patrick d. elliott and martin hackl

(1) JEcco swimsK = {𝑤 ∣ Ecco swims in 𝑤 }

On this theory, when a sentence such as (1) is asserted in a cg 𝑐 (and the asser-
tion is accepted by the discourse participants), we can easily model the effect of
the assertion on the cg via simple set intersection.

In the parlance of the satisfaction theory, we say that the sentence “updates” the
cg.

(2) 𝑐 ∩ {𝑤 ∣ Ecco swims in 𝑤 }

One of the primary innovations of the satisfaction theory, and dynamic seman-
tics more generally,3, is to treat the semantic contribution of a sentence as an

3 See especially Heim 1982.instruction to update a context set:

(3) JEcco swimsK = 𝜆𝑐 . 𝑐 ∩ {𝑤 ∣ Ecco swims in 𝑤 }

In this theory, semantic presupposition receives a natural treatment – a sen-
tence 𝑝𝜋 (where 𝜋 is its presupposition) – requires that 𝜋 be true throughout
the context set 𝑐, in order for an update of 𝑐 can be defined.

We can write this is directly as a definedness condition:

(4) Jthe dolphin swimsK = 𝜆𝑐 ∶ 𝑐 ⊆ {𝑤′ ∣ there is a dolphin in 𝑤′ }
. 𝑐 ∩ {𝑤 ∣ a dolphin swims in 𝑤 }

The update in (4) will simply be undefined if it doesn’t follow from the mutual
beliefs of the discourse participants that there is a dolphin.

This captures our qualitative intuitions about the conditions under which a
sentence with a presupposition is felicitous.

One of the most beautiful results of the satisfaction theory is that it provides us
with the results to capture the Heim-Karttunen projection patterns.

(5) [A dolphin swam] and [the dolphin was fast]. presuppositionless

(6) [the dolphin was fast] and [a dolphin swam].
presupposes: there is a dolphin

presupposition and delayed evaluation 3

(7) Projection in conjunctive sentences
If A𝜋, and B𝜌, then a sentence of the form “A and B” presupposes 𝜋, and
unless A entails 𝜌, also presupposes 𝜌

We find an identical pattern in conditional sentences:

(8) If [a dolphin swims], then [the dolphin is fast]. presuppositionless

(9) If [the dolphin is fast], then [a dolphin swims].
presupposes: there is a dolphin

(10) Projection in conditional sentences
If A𝜋, and B𝜌, then a sentence of the form “if A then B” presupposes 𝜋,
and unless A entails 𝜌, also presupposes 𝜌

Famously, the way that these patterns are accounted for is to treat natural
language and, and if..then... etc. as operations that manipulate updates.

Natural language and, for example, can be defined as a connective that takes
two updates 𝜙 and 𝜓 threads them together via function composition – first,
the first conjunct updates the context set, then, the second conjunct updates the
result.

(11) Dynamic conjunction (def.)
𝜙 ; 𝜓 ≔ 𝜓 ∘ 𝜙

Let’s see, informally, how this captures the Heim-Karttunen projection facts.

(12) Ja dolphin swamK ; Jthe dolphin was fastK
= 𝜆𝑐 . [𝜆𝑐′ ∶ 𝑐′ ⊆ {𝑤′ ∣ there’s a dolphin in 𝑤′ } . 𝑐′ ∩ {𝑤′ ∣ a dolphin was fast in 𝑤′ }]

(𝑐 ∩ {𝑤 ∣ a dolphin swam in 𝑤 })

Since first updating 𝑐 with a dolphin swam, a subsequent update of the second
conjunct is always guaranteed to be defined, just in case the first update is
successful. This accurately captured the observed projection pattern.

Since the definition of dynamic conjunction is asymmetric, if the first conjunct
has a definedness condition, this definedness condition will be inherited by the
conjunctive update.

The same kind of story holds for the conditional, although stating the meaning

4 patrick d. elliott and martin hackl

of the dynamic counterpart of material implication is somewhat more compli-
cated.

if p then q is defined essentially via first order equivalence as it’s not the case
that p and not q.

(13) Dynamic conditional (def.)
if 𝜙 𝜓 ≔ 𝜆𝑐 . 𝑐 − (𝜙 𝑐 − (𝜙 ; 𝜓) 𝑐)

First, we update 𝑐 with 𝜙, and then subtract the result of doing the sequential
update 𝜙 ; 𝜓 on 𝑐. Then we subtract that final result from 𝑐.

The component to pay attention to is the fact that the meaning of the operator
is stated in terms of discourse sequencing.

This captures the basic Heim-Karttunen projection facts – since the conse-
quent is interpreted in the context of first updating with the antecedent, it is
guaranteed to be always defined:

(14) if Ja dolphin swamK Jthe dolphin was fastK
= 𝜆𝑐 . 𝑐 − (

(𝑐 ∩ {𝑤 ∣ a dolphin swam in 𝑤 })
− ((𝑐 ∩ {𝑤 ∣ a dolphin swam in 𝑤 }) ∩ {𝑤′ ∣ a dolphin was fast in 𝑤′ })

)

1.2 The proviso problem

The satisfaction theory, while providing an extremely neat explanation for the
Heim-Karttunen projection facts, suffers from a well-known deficiency known
as the proviso problem.4

4 The proviso problem was first brought to
light by Geurts 1996.

Consider what we predict as the presupposition of the following sentence:

(15) If a shark swims, then the dolphin was fast.

(16) if Ja shark swimsK Jthe dolphin was fastK
= 𝜆𝑐 . 𝑐 −

⎛
⎜⎜⎜
⎝

(𝑐 ∩ {𝑤 ∣ a shark swam in 𝑤 })

− (
(𝜆𝑐′ ∶ 𝑐′ ⊆ {𝑤′ ∣ there’s a dolphin in 𝑤′ } . 𝑐′ ∩ {𝑤′ ∣ a dolphin was fast in 𝑤′ })
(𝑐 ∩ {𝑤 ∣ a shark swam in 𝑤 })

)

⎞
⎟⎟⎟
⎠

This update will be defined for a context 𝑐, just in case 𝑐 entails that no shark
swam or there is a dolphin.

presupposition and delayed evaluation 5

That’s because, if the global context 𝑐 has this property, updating it with a shark
swam is enough to guarantee that the second disjunct must be true – namely,
that there is a dolphin, in which case the presupposition of the consequent is
guaranteed to be satisfied.

Note that no shark swam or there is a dolphin is equivalent to if a shark swam,
then there is a dolphin, and indeed, the usual way that the proviso problem is
stated is as follows: the satisfaction theory predicts weak, conditional presuppo-
sitions in certain cases.

Here’s a classic example:

(17) If Theo hates sonnets, then so does his wife. (Geurts 1996)

In an out-of-the-blue context, we would tend to accommodate (18), not the
weaker (19) predicted by, e.g., the satisfaction theory:

(18) Theo has a wife attested presupposition

(19) If Theory hates sonnets then Theo has a wife predicated presupposition

The implicit assumption here is that, if the presupposition of a sentence 𝑝𝜋 isn’t
entailed by a given context 𝑐, we first update 𝑐 with 𝜋.

In other words, we first winnow out worlds from the context where Theo hates
sonnets but doesn’t have a wife.5

5 Although we’ll only talk about the satisfac-
tion theory here for the sake of exposition,
this isn’t the only theory that facts the pro-
viso problem. The multidimensional theory
has the same problem (Karttunen & Peters
1979), as does the trivalent approach (B. R.
George 2007, 2008, Fox 2013).

The satisfaction theory predicts that if the weaker, conditional statement is part
of the common ground, then accommodation will be unnecessary. This seems
correct.

(20) We’ve figured out, that if the butler called in sick on Monday, then some-
one killed Smith. Furthermore, if the butler called in sick on Monday, it
was the butler who killed Smith!
3We haven’t yet figured out whether or not Smith is still alive.

It’s only when we have to accommodate that the proviso problem becomes
apparent.

(21) We’ve figured out, that if the butler called in sick on Monday, then it was
the butler who killed Smith.
7We haven’t yet figured out whether or not Smith is still alive.

6 patrick d. elliott and martin hackl

So the question is, how do we keep the good predictions of the satisfaction
theory, without making bad predictions wrt what is accommodated (examples
from Mandelkern 2016).

The proviso problem is a problem for other connectives too:

(22) Either Theo doesn’t hate sonnets, or he and his wife both hate sonnets.
attested presupposition: Theo has a wife
predicted presupposition: if Theo hates sonnets then Theo has a wife

A possibly related problem is that the dynamic theory predicts weak projection
for triggers embedded under attitude verbs, i.e., (23) is predicted to presuppose
that Alex believes that Robyn used to smoke6

6 We won’t discuss this data today, although
Grove does extend his theory to account for
these cases.(23) Alex believes that Robyn stopped smoking.

This is motivated by local satisfaction, since the following sentence is presuppo-
sitionless:

(24) If Alex believes that Robyn used to smoke, then he believes that she
stopped.

Nevertheless, what is accommodated when (23) is uttered in an out of the blue
context is plausibly that Robyn used to smoke

(25) Alex believes that Robyn stopped smoking, # but I have no idea if she
used to smoke.

1.3 Dismissing a pragmatic response

A disparity between prediction presuppositions and what is accommodated is
not necessarily an insurmountable problem for the satisfaction theory. Here is
the basic idea behind a pragmatic explanation:

(26) Strengthening:
For pragmatic reasons, we sometimes accommodate strictly more than is
presupposed.

Here is one way of spelling this out (from Mandelkern 2017):

presupposition and delayed evaluation 7

(27) Plausibility:
a. When S asserts if 𝑝 then 𝑞𝜋, her listener compares the relative plausi-

bility of:
i. S is presupposing 𝑝 ⊃ 𝜋
ii. S is presupposing 𝜋

b. S will conclude in favour of (i) iff she has a pragmatic reason to
think (it’s common ground that) (i) is more plausible than (ii).

This seems to make straightforwardly bad predictions. The following example
is from Mandelkern (2016):

(28) ?? John was limping earlier; I don’t know why. Maybe he has a stress
fracture. I don’t know if he plays any sports, but if he has a stress frac-
ture, then he’ll stop running cross-country now.

Given the context – the speaker doesn’t know if John plays sports – the condi-
tional presupposition predicted by the satisfaction theory: if John has a stress
fracture, he used to run cross-country, is much more plausible than the uncondi-
tional presupposition.

This example, tellingly, becomes OK if we alter the contextual set-up:

(29) John was limping earlier; I don’t know why. Maybe he has a stress frac-
ture. If he has a stress fracture, then he’ll stop running cross-country
now.

Some more problems for a pragmatic account:

Objection from assertion

When we assert “if 𝑝 the 𝑞”, why don’t we always strengthen to 𝑞 if 𝑞 is more
plausible?

We need to say something here, e.g., if you knew 𝑞, you should have asserted 𝑞
(wait for the pragmatics block!).

Whatever our account is, it shouldn’t apply to presupposed content.

Objection from anaphora

Guerts (1996); attributed to van der Sandt:

8 patrick d. elliott and martin hackl

(30) a. John has a wife; she is a lawyer.
b. ??John is married; she is a lawyer.

Proviso cases pattern with (30a) not (30b):

(31) If Theo hates sonnets, his wife does too. She definitely likes elegies
though.

Objection from factives

(32) Walter knows that if Theo hates sonnets, he has a wife.
presupposes: if Theo hates sonnets, then he has a wife

Since this presupposition is identical to that of “If Theo hates sonnets, then his
wife does too”, why is the latter strengthened and this one not?

Objection from cancellation

If strengthening is pragmatic, it should be cancellable.

(33) If the problem was difficult, then it wasn’t Morton who solved it. But as a
matter of fact the problem wasn’t solved at all.

(34) We don’t know whether Jimbo was murdered or has run away from home.
We need to examine his room.
a. If there are bloodstains in the room, then Jimbo was murdered, and

Jimbo’s murderer did a sloppy job
b. #If there are bloodstains in the room, then Susie’s murderer’s did a

sloppy job.

1.4 Towards a scopal theory

Grove’s strategy in this paper is as follows:

• Start out with a compositional fragment with the resources for dealing with
intensionality and alternatives, building on Charlow (2014, 2019).

• Extend this grammar with the resources to deal with presupposition, and
sequential update. Show how the proviso problem arises.

• Extend the fragment with mechanisms that allow the evaluation of a presup-
position to be delayed (scope-taking).

presupposition and delayed evaluation 9

• The proviso problem is resolved by allowing a presupposition trigger to
scope out of an environment which would otherwise lead to filtration.

2 A fragment with alternatives

In formal semantics, the standard Stalnakerian assumption is that sentences
denote sets of possible worlds.

To illustrate, a sentence such as “a dolphin swam” would be assigned the follow-
ing denotation:

(35) { 𝑤 ∣ ∃𝑥[dolphin𝑤 𝑥 ∧ swam𝑤 𝑥] }

Throughout the paper, Grove frequently takes advantage of the fact that we can
think of characteristic functions, as representing sets. We can take (35) to be
syntactic sugar for the following function, of type s→ t.7

7 s is the type of worlds; t the type of
(bivalent) truth values.(36) 𝜆𝑤 . ∃𝑥[dolphin𝑤 𝑥 ∧ swam𝑤×] s→ t

We can think of (36) as a function that takes a world 𝑤, and:

• returns ⊤ if 𝑤 is in (35),

• and ⊥, if 𝑤 is not in (35).8
8 Following Grove 2019, we’ll write the
inhabitants of t (namely true and false) as ⊤
and ⊥.

In other words, the conditions on membership in (35) are bivalent.

For reasons that will become clear, Grove adopts a theory which introduces a
slight twist on the Stalnakerian formula – rather than sets of possible worlds,
sentences will be taken to denote sets of pairs of worlds and truth values.

(37) { ⟨𝑤, (swam𝑤 𝑥)⟩ ∣ dolphin𝑤 𝑥 }

The meaning in (37) will map ⟨𝑤, ⊤⟩ to ⊤ iff a dolphin swam in 𝑤, and ⟨𝑤, ⊥⟩ to
⊤ iff a dolphin didn’t swim in 𝑤.

Let’s say that we have four worlds: in 𝑤𝑓, flipper but not ecco swam, in 𝑓𝑒, ecco
but not flipper swam, in 𝑤𝑓𝑒 both dolphins swam, and in 𝑤∅ no dolphin swam.
The extension of (37) will be the following set of pairs:

10 patrick d. elliott and martin hackl

Ja dolphin swamK =
⎧⎪⎪
⎨⎪⎪
⎩

⟨𝑤𝑓, ⊤⟩, ⟨𝑤𝑓, ⊥⟩
⟨𝑤𝑒, ⊤⟩, ⟨𝑤𝑒, ⊥⟩
⟨𝑤𝑓𝑒, ⊤⟩,
⟨𝑤∅, ⊥⟩

⎫⎪⎪
⎬⎪⎪
⎭

We can think of sentences with indefinites as inducing indeterminacy – the
sentence “a dolphin” swam has an indeterminate truth value at 𝑤, depending
on which dolphin in 𝑤 we have in mind.

We can of course retrieve the classical proposition as follows:

(38) { ⟨𝑤, (⟨𝑤, ⊤⟩ ∈ Ja dolphin swamK)⟩ }
Just as before, we can think of a set of pairs as syntactic sugar for a curried
characteristic function, as in (39).

(39) 𝜆𝑤𝑡 . ∃𝑥[dolphin𝑤 𝑥 ∧ 𝑡 = swam𝑤 𝑥] s→ t→ t

How do we derive these sentential meanings compositionally? Following
Charlow, Grove assumes that indefinites introduce alternatives:

(40) Ja dolphinK ≔ { ⟨𝑤, 𝑥⟩ ∣ dolphin𝑤 𝑥 } s→ e→ t

Taking the four worlds we had before, the extension of (40) would be as fol-
lows:

⎧⎪⎪
⎨⎪⎪
⎩

⟨𝑤𝑓, flipper⟩, ⟨𝑤𝑓, ecco⟩
⟨𝑤𝑒, flipper⟩, ⟨𝑤𝑒, ecco⟩
⟨𝑤𝑓𝑒, flipper⟩, ⟨𝑤𝑓𝑒, ecco⟩
⟨𝑤∅, flipper⟩, ⟨𝑤∅, ecco⟩

⎫⎪⎪
⎬⎪⎪
⎭

Predicates, on the other hand, are assumed to denote sets of world-predicate
pairs. The following entry simply pairs every world 𝑤 with the predicate that is
true of an 𝑥 is 𝑥 swam in 𝑤.

(41) JswamK ≔ { ⟨𝑤, (𝜆𝑥 . swam𝑤 𝑥)⟩ } s→ (e→ t) → t

We can compose indefinites and predicates by doing an intensionalized version
of Pointwise Function Application (pfa).9

9 In function talk, intensional pfa, which
we’ll ap. This is defined as follows:

(42) 𝑚
⊙
A 𝑛

≔ 𝜆𝑤𝑝 . ∃𝑥, 𝑦 [
𝑚 𝑤 𝑥
∧ 𝑛 𝑤 𝑦 ∧ 𝑝 = 𝑥 A 𝑦

]

N.b. that, in defining
⊙
A, I depart slightly

from Grove who explicitly defines forwards
and backwards versions. Under the formu-
lation here, the forwards and backwards
variants are implicit in overloaded A.

presupposition and delayed evaluation 11

(43) Ap (def.)

𝑚
⊙
A 𝑛 ≔ { ⟨𝑤, 𝑥 A 𝑦⟩ ∣ ⟨𝑤, 𝑥⟩ ∈ 𝑚 ∧ ⟨𝑤, 𝑦⟩ ∈ 𝑛 }

(s→ (a→ b) → t) → (s→ a→ t) → s→ b→ t
(s→ a→ t) → (s→ (a→ b) → t) → s→ b→ t

Now we can compose indefinites and predicates via
⊙
A.

{ ⟨𝑤, (swam𝑤 𝑥)⟩ ∣ dolphin𝑤 𝑥 }
⊙
A

{ ⟨𝑤, 𝑥⟩ ∣ dolphin𝑤 𝑥 }

a dolphin

{ ⟨𝑤, (𝜆𝑥 . swam𝑤 𝑥)⟩ }
swam

Figure 1: Alternative-semantic composition

via
⊙
A

Not all expressions introduce alternatives – concretely, we need a way of lift-
ing a type e argument into something that can compose with a predicate via
intensional pfa.

We can do this via a polymorphic, intensional variant of Partee’s ident type
shifter, which we’ll call pure.

(44) Pure (def.)
𝑎𝜌 ≔ { ⟨𝑤, 𝑎⟩ }

Now we can compose a sentence such as ecco swam:

{ ⟨𝑤, (swam𝑤 ecco)⟩ }
⊙
A

{ ⟨𝑤, ecco⟩ }
Ecco𝜌

{ ⟨𝑤, (𝜆𝑥 . swam𝑤 𝑥)⟩ }
swam

Figure 2: Alternative-semantic composition
via ap and pure

This meaning pairs each world with either ⊤ or ⊥ depending on whether Ecco
swam in that world.

JEcco swamK =
⎧⎪⎪
⎨⎪⎪
⎩

⟨𝑤𝑓, ⊥⟩
⟨𝑤𝑒, ⊤⟩
⟨𝑤𝑓𝑒, ⊤⟩
⟨𝑤∅, ⊥⟩

⎫⎪⎪
⎬⎪⎪
⎭

12 patrick d. elliott and martin hackl

Something about the compositional schema we’re using here should be familiar
from our discussion of continuations. We have, so far, the following ingredi-
ents:

• A way of describing meanings that encode both intensionality and inde-
terminacy – namely, the enriched type-space s→ a→ t (where a is an
ordinary, extensional type).

• A way of doing function application in our enriched type-space – namely,
intensional pfa (or ap).

• A way of lifting a “normal” meaning into our enriched type-space – namely,
pure.

This will, hopefully, remind you of how we framed continuation semantics: we
had (i) a type constructor K, characterizing the enriched type-space of scopal
meanings, (ii) sfa for doing function application in the enriched type-space,
and (iii) Montague Lift for shifting something normal into a trivially scopal
meaning.

This construct is known as an applicative functor in the functional program-
ming/category theory literature (Mcbride & Paterson 2008).

Following Grove, we can be more explicit about the applicative functor under-
lying the fragment we’ve constructed so far. The enriched type-space we’re
dealing with is characterized by the type constructor defined in (45).

(45) ⊙ a ≔ s→ a→ t

Pure, defined in (46a), is a method for lifting a value into a trivial inhabitant of
⊙. Ap, defined in (46b), is a method for doing fa in the space characterized by
⊙. Here, we’re giving explicit definitions of these operations, rather than using
set talk.

(46) a. 𝑎𝜌 ≔ 𝜆𝑤𝑥 . 𝑥 = 𝑎 a→ ⊙ a
b. 𝑚

⊙
A 𝑛 ≔ 𝜆𝑤𝑝 . ∃𝑥, 𝑦[𝑚 𝑤 𝑥 ∧ 𝑛 𝑤 𝑦 ∧ 𝑝 = 𝑥 A 𝑦]

⊙ (a→ b) → ⊙ a→ ⊙ b
⊙ a→ ⊙ (a→ b) → ⊙ b

presupposition and delayed evaluation 13

3 Upgrading the fragment to accommodate presupposition

3.1 Adding trivalence

In order to analyze presuppositions, we’ll shift to a trivalent setting. Alongside
the familiar truth values ⊤ and ⊥, we’ll introduce a new truth value – #.

To model this formally, we’ll define a new sum type t#, the inhabitants of
which are the three trivalent truth values. We can think of # as representing a
state of uncertainty.

⊤ ∶ t#
⊥ ∶ t#
∶ t#

In order to talk about meaning components which may give rise to undefined-
ness, Grove makes use of Beaver’s 𝛿-operator – this takes an bivalent truth
value, and maps ⊤ to itself, and ⊥ to #.

(47) Beaver’s 𝛿-operator (def.)

𝑝𝛿 = {
⊤ 𝑝 = ⊤
𝑝 = ⊥

𝛿 ∶ t→ t#

To briefly illustrate, the following predicate will return # if its argument is a
non-dolphin in 𝑤:

(48) 𝜆𝑥 . 𝛿 (dolphin𝑤 𝑥)

In set talk, this means that membership conditions on a set can be trivalent –
there are three possibilities: (a) 𝑥 is in 𝑋 (return ⊤), (b) 𝑥 is not in 𝑋 (return ⊥),
or (c) it’s undefined whether or not 𝑥 is in 𝑋 (return #).

(49) { 𝑥 ∣ 𝛿 (dolphin𝑤 𝑥) }

In order to simplify the proposal for presupposition projection, Grove assumes
a weak Kleene semantics for the metalanguage logical connectives:10

10 Importantly, Weak Kleene is not taken
to characterize the meaning of natural
language and, if..then.., etc.Weak Kleene just means that undefinedness always projects.

14 patrick d. elliott and martin hackl

∧ ⊤ ⊥ #
⊤ ⊤ ⊥ #
⊥ ⊥ ⊥ #
#

→ ⊤ ⊥ #
⊤ ⊤ ⊥ #
⊥ ⊤ ⊤ #
#

→
⊤ ⊥
⊥ ⊤
#

Figure 3: Weak Kleene

Finally, it will be helpful to give a trivalent semantics for the metalanguage
existential quantifier. As stated, this semantics gives rise to existential projection.
In other words, a formula of the form ∃𝑥[𝑝 𝑥 ∧ 𝛿(𝑞 𝑥)] is defined iff at least one
𝑥 is a 𝑞.

{ JϕK𝑔′ || 𝑔[𝑥]𝑔′ } J⌜∃𝑥 𝜙⌝K𝑔
{ ⊤ } ⊤
{⊥ } ⊥
{# } #
{⊤, ⊥ } ⊤
{⊤, # } ⊤
{⊥, # } ⊥
{⊤, ⊥, # } ⊤

Figure 4: Semantics for existentially quanti-
fied formulae

3.2 Upgrading the applicative functor

We can now upgrade our old applicative functor⊙ into one that can handle not
just intensionality and indeterminacy, but also (potential) undefinedness. We’ll
write this new applicative functor as⊛.

The type constructor is much the same as our old type constructor, only, in-
stead of returning a bivalent truth-value, it returns a trivalent truth-value:

(50) ⊛ a ≔ s→ a→ t#

Here, set talk breaks down somewhat, but we can still talk “as if ” (50) charac-
terizes a set of world-value pairs for which membership can be true, false, or
undefined. We’ll continue to use sets as syntactic sugar for curried functions.

We can now also redefine pure and ap such that they can handle inhabitants of
this newly enriched type space:

(51) a. 𝑎𝜌 ≔ 𝜆𝑤𝑥 . 𝛿 (𝑥 = 𝑎) a→ ⊛ a
b. 𝑚

⊛
A 𝑛 ≔ 𝜆𝑤𝑝 . ∃𝑥, 𝑦[𝑚 𝑤 𝑥 ∧ 𝑛 𝑤 𝑦 ∧ 𝛿 (𝑝 = 𝑥 A 𝑦)]

⊛ (a→ b) → ⊛ a→ ⊛ b
⊛ a→ ⊛ (a→ b) → ⊛ b

presupposition and delayed evaluation 15

We now have all of the resources we need to illustrate a simple case of presup-
position projection with a definite description.

3.3 Presupposition projection with definites

In our current compositional setting, an indefinite such as “a dolphin” takes a
world 𝑤 and an individual 𝑥, and:

• returns ⊤ if 𝑥 is a dolphin in 𝑤, and

• ⊥ if 𝑥 is not a dolphin in 𝑤.

(52) Ja dolphinK ≔ 𝜆𝑤𝑥 . dolphin𝑤 𝑥 ⊛ e

In our new, trivalent setting, definites such as “the dolphin” will take a world 𝑤,
an individual 𝑥, and:

• return ⊤ if 𝑥 is a dolphin in 𝑤, and

• return # if 𝑥 is not a dolphin in 𝑤.

(53) Jthe dolphinK ≔ 𝜆𝑤𝑥 . 𝛿 (dolphin𝑤 𝑥) ⊛ e

We can still use set notation, but as we’ve mentioned the parallel is obscured
somewhat – the result of right-hand side of the set comprehension can be
either true, false, or undefined:

(54) Jthe dolphinK ≔ { ⟨𝑤, 𝑥⟩ ∣ 𝛿 (dolphin𝑤 𝑥) } set talk

When we compose the definite description with an ordinary one-place predi-
cate, the result is a function which takes a world 𝑤 and a (bivalent) truth value
𝑡, and returns:

true if there is a dolphin who swims in 𝑤, and 𝑡 = ⊤.

false if there is a dolphin who doesn’t swim in 𝑤, and 𝑡 = ⊥.

undefined if there are no dolphins in 𝑤.

16 patrick d. elliott and martin hackl

{ ⟨𝑤, swam𝑤 𝑥⟩ ∣ 𝛿 (dolphin𝑤 𝑥) }
⊛
A

{ ⟨𝑤, 𝑥⟩ ∣ 𝛿 (dolphin𝑤 𝑥) }

the dolphin

{ ⟨𝑤, (𝜆𝑥 . swam𝑤 𝑥)⟩ }
swam

Figure 5: Composition with a definite
description

We can still think of the resulting meaning as characterizing a set of world-
truth-value pairs, only now, membership in the set may be true, false, or unde-
fined.

We can identify the semantic presupposition of a sentence 𝜙 as the following
set:

(55) The semantic presupposition of 𝜙
{𝑤 ∣ ∃𝑡[(J𝜙K ⟨𝑤, 𝑡⟩ = ⊤) ∨ (J𝜙K ⟨𝑤, 𝑡⟩ = ⊥)] }

This accurately tells us that the semantic presupposition of “the dolphin swam”
is the set of worlds in which there is some dolphin – only such worlds paired
with a truth value 𝑡 are mapped to ⊤ or ⊥.

We’ve derived the basic presupposition projection properties of definites. The
next stage is to develop a theory according to which presuppositions can be fil-
tered in certain environments – this will net us the basic results of a satisfaction
theory of presupposition.

3.4 Basic presupposition projection

In order to account for the Heim-Karttunen projection pattern, we’re going to
need a “short-circuited” version of logical conjunction, defined in (6).

& ⊤ ⊥ #
⊤ ⊤ ⊥ #
⊥ ⊥ ⊥ ⊥
#

Figure 6: Short-circuited conjunction

This short-circuited connective is much like ordinary logical conjunction – the
difference being that if the first conjunct is false, & returns false, regardless of
the value of the second conjunct.11

11 This is the so-called “middle Kleene”
semantics for conjunction. Benjamin R.
George (2014) shows that the middle Kleene
entries for the truth-functional connectives
can be derived from their bivalent entries
via a general algorithm; the semantics in (6)
need not be stipulated.

If were to imagine that & characterizes the inferences associated with English

presupposition and delayed evaluation 17

and, this would predict that the following sentence should be judged false,
rather than undefined (although, to emphasise, we’re not taking & not charac-
terize the meaning of and).

(56) Trump isn’t president and the king of France is bald.

We can now define discourse sequencing/dynamic conjunction in terms of &.

(57) Discourse sequencing (def.)
𝜙 + 𝜓 ≔ { ⟨𝑤, 𝑡⟩ ∣ 𝜙 ⟨𝑤, ⊤⟩ & 𝜓 ⟨𝑤, 𝑡⟩ } (+) ∶ ⊛ t → ⊛ t→ ⊛ t

When we update 𝜙 with 𝜓, we take the subset of 𝜓 containing worlds in which 𝜙
is true.

Let’s now illustrate how this emulates the basic predictions of the satisfaction
theory of presupposition projection, by taking a concrete example.

(58) A dolphin swam. The dolphin was fast.

We know what each conjunct should denote already:

(59) a. { ⟨𝑤, swam𝑤 𝑥⟩ ∣ dolphin𝑤 𝑥 } ⊛ t
b. { ⟨𝑤, fast𝑤 𝑥⟩ ∣ 𝛿 (dolphin𝑤 𝑥) } ⊛ t

{ ⟨𝑤, (fast𝑤 𝑦)⟩ ∣ ∃𝑥[dolphin𝑤 𝑥 ∧ swam𝑤 𝑥] & 𝛿 (dolphin𝑤 𝑦) }

𝜆𝑝 . { ⟨𝑤, 𝑡⟩ ∣ ∃𝑥[dolphin𝑤 𝑥 ∧ swam𝑤 𝑥] & 𝑝 ⟨𝑤, 𝑡⟩ }

{ ⟨𝑤, swam𝑤 𝑥⟩ ∣ dolphin𝑤 𝑥 }

a dolphin swam

+

{ ⟨𝑤, fast𝑤 𝑥⟩ ∣ 𝛿 (dolphin𝑤 𝑥) }

the dolphin was fast

Figure 7: Presupposition filtration in a
conjunctive sentence

Remember, we characterize the semantic presupposition of a sentence 𝜙 as:

{ 𝑤 ∣ ∃𝑡[(J𝜙K ⟨𝑤, 𝑡⟩ = ⊤) ∨ (J𝜙K ⟨𝑤, 𝑡⟩ = ⊥)] }

The world truth value pairs which, fed into the conjunctive meaning return
either ⊤ or ⊥, are those worlds in which either (a) there is no dolphin that
swam, or (b) there is a dolphin that swam, and is fast.

18 patrick d. elliott and martin hackl

As noted by Grove – nothing guarantees that, if the conjunctive sentence is
true, the dolphin that verifies the first conjunct is the same as the dolphin that
verifies the second conjunct.12

12 This is an instantiation of the binding
problem for presupposition (Karttunen &
Peters 1979).This will be solved in a version of the final analysis enriched with assignments.

3.5 Encountering the proviso problem

In order to illustrate the proviso problem, we first need to give a semantics for
sentential negation.

(60) Sentential negation (def.)
not 𝜙 ≔ { ⟨𝑤,⊤⟩ ∣ ¬ (𝜙 ⟨𝑤, ⊤⟩) }

Given a proposition with presuppositions 𝜙𝜋, not 𝜙 is a new proposition, such
that:

• For any world 𝑤, ⟨𝑤, ⊤⟩ ∈ not 𝜙 just in case 𝜙 ⟨𝑤, ⊤⟩ = ⊥.

• If 𝜙 ⟨𝑤, ⊤⟩ = #, then (not 𝜙) ⟨𝑤, ⊤⟩ = # and (not 𝜙) ⟨𝑤, ⊥⟩ = #

The consequence is that sentential negation closes off the scope of an indefinite
by preventing alternatives from percolating up. To illustrate:

{ ⟨𝑤, ⊤⟩ ∣ ¬ (⟨𝑤, ⊤⟩ ∈ {𝑤, swam𝑤 𝑥 ∣ dolphin𝑤 𝑥 }) }

𝜆𝑝 . { ⟨𝑤, ⊤⟩ ∣ ¬ (𝑝 ⟨𝑤, ⊤⟩) }
not

{ ⟨𝑤, swam𝑤 𝑥⟩ ∣ dolphin𝑤 𝑥 }

a dolphin swam

Figure 8: Sentential negation closes off
indeterminacy

Let’s say that we have four worlds: in 𝑤𝑓, flipper but not ecco swam, in 𝑓𝑒, ecco
but not flipper swam, in 𝑤𝑓𝑒 both dolphins swam, and in 𝑤∅ no dolphin swam.
The extension of “A dolphin swam” will be the following set of pairs:

⎧⎪⎪
⎨⎪⎪
⎩

⟨𝑤𝑓, ⊤⟩, ⟨𝑤𝑓, ⊥⟩
⟨𝑤𝑒, ⊤⟩, ⟨𝑤𝑒, ⊥⟩
⟨𝑤𝑓𝑒, ⊤⟩,
⟨𝑤∅, ⊥⟩

⎫⎪⎪
⎬⎪⎪
⎭

The extension for “A dolphin didn’t swim” is the following set of pairs:

presupposition and delayed evaluation 19

{ ⟨𝑤∅, ⊤⟩ }

If we have a definite description in the scope of sentential negation, however,
the semantic presupposition of the complement is inherited by the negative
sentence:

{ ⟨𝑤, ⊤⟩ ∣ ¬ (⟨𝑤, ⊤⟩ ∈ {𝑤, swam𝑤 𝑥 ∣ 𝛿 (dolphin𝑤 𝑥) }) }

𝜆𝑝 . { ⟨𝑤, ⊤⟩ ∣ ¬ (𝑝 ⟨𝑤, ⊤⟩) }
not

{ ⟨𝑤, swam𝑤 𝑥⟩ ∣ 𝛿 (dolphin𝑤 𝑥) }

a dolphin swam

Figure 9: Sentential negation allows unde-
finedness to project

This is because, if there are no dolphins in 𝑤, membership of ⟨𝑤, ⊤⟩ in the
complement will be undefined, and metalanguage ¬ preserves undefinedness
(weak Kleene).

We can use this entry for sentential negation to give an entry for the condi-
tional operator. Just as in the classical satisfaction theory, we do so via first
order equivalence.

(61) Conditional operator (def.)
if 𝜙 𝜓 ≔ not (𝜙 + not 𝜓)

if 𝜙 𝜓 will turn out true, roughly, if updating 𝜙 with the negation of 𝜓 turns out
false.

Only worlds in which the truth of 𝜙 guarantees the truth of 𝜓 will remain.

Let’s see what this entry for the conditional operator predicts for one of our
original sentence used to illustrate the proviso problem:

(62) If Theo has a brother, he’ll bring his wetsuit.

The computation of the final meaning is shown in figure (10).

We can more clearly see what the presupposition on the resulting meaning is if
we translate the resulting set back into function talk:

(63) 𝜆𝑤𝑡 . ¬ (
has-brother𝑤 Theo

& ¬ (∃𝑥[𝛿 (wetsuit𝑤 𝑥) ∧Theo bring𝑤 𝑥]) ∧ 𝑡 = ⊤
)

20 patrick d. elliott and martin hackl

{ ⟨𝑤, ⊤⟩ ∣ ⟨𝑤, ⊤⟩ ∉ { ⟨𝑤′, ⊤⟩ ∣ has-brother𝑤′ Theo & ⟨𝑤′, ⊤⟩ ∉ { ⟨𝑤″,Theo bring𝑤″ 𝑥 ∣ 𝛿 (wetsuit𝑤″ 𝑥)⟩ } } }

not ({ ⟨𝑤,has-brother𝑤 Theo⟩ } + not { ⟨𝑤,Theo bring𝑤 𝑥⟩ ∣ 𝛿 (wetsuit𝑤 𝑥) })

𝜆𝑝 . not ({ ⟨𝑤,has-brother𝑤 Theo⟩ } + not 𝑝)

if { ⟨𝑤,has-brother𝑤 Theo⟩ }

Theo has a brother

{ ⟨𝑤,Theo bring𝑤 𝑥⟩ ∣ 𝛿 (wetsuit𝑤 𝑥) }

he’ll bring his wetsuit

Figure 10: The proviso problem emerges

Since ¬ preserves undefinedness, the presupposition of the second conjunct of
& is that Theo has a wetsuit.

The first conjunct asserts that Theo has a brother. By dint on the semantics of
&, the presupposition of the second conjunct will only be evaluated in those
worlds in which Theo has a brother is true.

The definedness condition of the whole sentence is therefore: Theo has a wet-
suit if he has a brother.

Zooming out, what properties of this fragment are such that the proviso prob-
lem arises, and what might we want to tweak in order to avoid it?

In general, the reasons are the following:

• The meaning of the conditional operator is stated in terms of discourse
sequencing, the definition of which is motivated by the filtering we observed
in conjunctive sentences.

• The presupposition of his wetsuit is evaluated within the context of the
consequent of the conditional.

As we’ll see Grove will seek a way out of this bind by tinkering with the second
property of the system – he’ll argue that the evaluation of a presupposition can
be delayed, via the same mechanisms responsible for delayed evaluation in a
more familiar domain – namely, scope.

presupposition and delayed evaluation 21

4 Shifting perspective: a grammar with scope-taking

In order make sense of the idea of presuppositional scope, we need to extend
our fragment with a new operation: join:

(64) Join (def.)
𝜇 𝑚 ≔ { ⟨𝑤, 𝑥⟩ ∣ ∃𝑛[⟨𝑤, 𝑛⟩ ∈ 𝑚 ∧ ⟨𝑤, 𝑥⟩ ∈ 𝑛] } µ ∶ ⊛ (⊛ a) → ⊛ a

Here,𝑚 is a set of world-set pairs – join tells us how to take a set of world-set
pairs, and “flatten it” into a set of world-value pairs.

Both the main set and the paired sets may, in principle, have definedness condi-
tions on membership.

𝜇 takes𝑚, and gives back a set containing all members of the paired sets in𝑚
which preserve the world with which they are paired.

Now, let’s see how we convert a definite description into a scope taker.

Jthe dolphinK ≔ { ⟨𝑤, 𝑥⟩ ∣ 𝛿 (dolphin𝑤 𝑥) } ⊛ e

In order to lift this into a scope-taker, we apply 𝜌 to the contained individual
value. We can define an operation, which we’ll call internal lift which does just
this.

(65) Internal lift (def.)
𝑚⇈⊛ ≔ { ⟨𝑤, 𝑥𝜌⟩ ∣ ⟨𝑤, 𝑥⟩ ∈ 𝑚 } ⇈⊛∶ ⊛ a→ ⊛ (⊛ a)

Applying internal lift to the dolphin gives back a higher-order member of the
enriched type-space, where the definedness condition on membership is on the
outer layer of the set:

(66) Jthe dolphinK⇈⊛ = { ⟨𝑤, { ⟨𝑤′, 𝑥⟩ }⟩ ∣ 𝛿 (dolphin𝑤 𝑥) } ⊛ (⊛ a)

In order to compose this with a predicate, the predicate must be lifted via 𝜌.

We also need a way of doing function application in a higher-order enriched
type-space. This is defined in the obvious way below:

(67) 𝑚
⊛
A2 𝑛 ≔ 𝜆𝑤𝑝 . ∃𝑥, 𝑦[𝑚 𝑤 𝑥 ∧ 𝑛 𝑤 𝑦 ∧ 𝛿 (𝑝 = 𝑥

⊛
A 𝑦)]

⊛ (⊛ (a→ b)) → ⊛(⊛ a) → ⊛(⊛ b)

22 patrick d. elliott and martin hackl

⊛(⊛ a) → ⊛ (⊛ (a→ b)) → ⊛(⊛ b)

The role of join will be to evaluate the scope of the presupposition trigger. This
is illustrated for a trivial example below, in which the presupposition associated
with the dolphin vacuously takes scope, and is evaluated at the root level.

{ ⟨𝑤, swam𝑤 𝑥⟩ ∣ 𝛿 (dolphin𝑤 𝑥) }

{ ⟨𝑤, { ⟨𝑤′, swam𝑤 𝑥⟩ }⟩ ∣ 𝛿 (dolphin𝑤 𝑥) }
⊛2

{ ⟨𝑤, { ⟨𝑤′, 𝑥⟩ }⟩ ∣ 𝛿 (dolphin𝑤 𝑥) }

the dolphin⇈⊛

{ ⟨𝑤, { ⟨𝑤′, (𝜆𝑥 . swam𝑤 𝑥)⟩ }⟩ }

swam𝜌

Figure 11: Vacuously scoping a uniqueness
presupposition

With this mechanism in hand, however, a presupposition can scope out of an
environment in which it would otherwise be filtered.

Now, back to our proviso problem case. We can generate the unconditional
presupposition just by applying internal lift to his wetsuit, and evaluating via
join at the root node.

{ ⟨𝑤,not ({ ⟨𝑤′,has-brother𝑤′ Theo⟩ } + not { ⟨𝑤″,Theo bring𝑤″ 𝑥⟩ })⟩ ∣ 𝛿 (wetsuit𝑤 𝑥) }

{ ⟨𝑤, (𝜆𝑝 . not ({ ⟨𝑤′,has-brother𝑤′ Theo⟩ } + not 𝑝)⟩⟩ }

𝜆𝑝 . not ({ ⟨𝑤,has-brother𝑤 Theo⟩ } + not 𝑝)

if Theo has a brother

{ ⟨𝑤, { ⟨𝑤′,Theo bring𝑤′ 𝑥⟩ }⟩ ∣ 𝛿 (wetsuit𝑤 𝑥) }

Theo𝜌∘𝜌 ...

bring𝜌 his wetsuit⇈⊛

Figure 12: Resolving the proviso problem
via scoping outApplying join to the resulting meaning will have the effect that the presup-

position of the outer set takes precedent over either any at-issue content or
presuppositions contributed by any inner sets.

Many questions remain:

• Mandelkern’s data suggests that, if the presupposition of the consequent isn’t
entailed in its local context, scoping out is obligatory. Why should this be?

• In general, wide-scope seems to be the “default”, but as we’ve discussed in
class, scope-shifting operations are often marked in the domain of quantifi-
cational scope.

presupposition and delayed evaluation 23

• It can’t be quite as simple as that however, since if the presupposition of the
consequent is entailed in its local context, narrow scope is the default.

Does the following sentence even have a reading that presupposes that Theo
has a wetsuit? Given hearer charitability, how do we tell?

(68) If Theo is a scuba diver, then he’ll bring his wetsuit.

References

Beaver, David I. 2001. Presupposition and assertion in dynamic semantics (Stud-
ies in logic, language, and information). Stanford, California: CSLI. 314 pp.

Charlow, Simon. 2014. On the semantics of exceptional scope. Dissertation.
Charlow, Simon. 2019. The scope of alternatives: indefiniteness and islands.

Linguistics and Philosophy.
Fox, Danny. 2013. Presupposition projection from quantificational sentences:

Trivalence, local accommodation, and presupposition strengthening. In
Ivano Caponigro & Carlo Cecchetto (eds.), From grammar to meaning.
Cambridge: Cambridge University Press.

George, B. R. 2007. Predicting presupposition projection: Some alternatives in
the strong Kleene tradition. unpublished manuscript. UCLA.

George, B. R. 2008. A new predictive theory of presupposition projection. In
Proceedings of SALT 18. Ithaca, NY: Cornell University: Linguistic Society of
America.

George, Benjamin R. 2014. Some remarks on certain trivalent accounts of
presupposition projection. Journal of Applied Non-Classical Logics 24(1-2).
_eprint: https://doi.org/10.1080/11663081.2014.911521.

Geurts, Bart. 1996. Local satisfaction guaranteed: A presupposition theory and
its problems. Linguistics and Philosophy 19(3). 259–294.

Grove, Julian. 2019. Satisfaction without provisos. lingbuzz/004914.
Heim, Irene. 1982. The semantics of definite and indefinite noun phrases. 2011

edition - typesetting by Anders J. Schoubye and Ephraim Glick. University
of Massachusetts - Amherst dissertation.

Heim, Irene. 1983. On the projection problem for presuppositions. In Proceed-
ings of WCCFL 2, 114–125. Stanford University.

Karttunen, Lauri & Stanley Peters. 1979. Conventional implicature. In Syntax
and semantics, vol. 2.

Mandelkern, Matthew. 2016. Dissatisfaction Theory. Semantics and Linguistic
Theory 26(0). 391–416.

Mcbride, Conor & Ross Paterson. 2008. Applicative programming with effects.
Journal of Functional Programming 18(1).

24 patrick d. elliott and martin hackl

Partee, Barbara. 1986. Noun-phrase interpretation and type-shifting principles.
In J. Groenendijk, D. de Jongh & M. Stokhof (eds.), Studies in discourse
representation theory and the theory of generalized quantifiers, 115–143.
Dordrecht: Foris.

Stalnaker, Robert. 1976. Propositions. In A. F. MacKay & D. D. Merrill (eds.),
79–91. New Haven: Yale University Press.

Stalnaker, Robert. 2002. Common Ground. Linguistics & Philosophy 25(5/6).
701–721.

	Satisfaction and its discontents
	Background on the satisfaction theory
	The proviso problem
	Dismissing a pragmatic response
	Towards a scopal theory

	A fragment with alternatives
	Upgrading the fragment to accommodate presupposition
	Adding trivalence
	Upgrading the applicative functor
	Presupposition projection with definites
	Basic presupposition projection
	Encountering the proviso problem

	Shifting perspective: a grammar with scope-taking

