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Introduction

• The simple, but powerful tools commonly assumed in formal
semantics, e.g., arbitrary functional types and higher-order
functions, leads to an expressivity problem.

• A particular manifestation of this problem: a broad class of
universally unattested non-conservative determiners can easily be
expressed as higher-order functions.

• My approach:
• Perhaps higher-order functions are the wrong tool.
• Expanding the set of possible individuals will allow determiner

meanings to be recast as predicates of pluralities.
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Roadmap

• Background:
• Determiner meanings in GQ-theory.
• Conservativity.
• Warming up with numeral semantics.

• Negative individuals.
• Introducing the main formal innovation.
• Incorporating plurality and maximality.

• Application to numerals.
• Extension to other determiners.

• The non-expressibility of non-conservative determiners.
• Any conservative determiner is expressible.
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Background



Generalized quantifier theory

• A determiner-meaning in GQ-theory is modeled as a binary
relation between sets of individuals 𝐴, 𝐵 (Barwise & Cooper 1981,
Keenan & Stavi 1986):

• 𝐴: the restrictor.
• 𝐵: the scope.

(1) a. some(𝐴, 𝐵) ⟺ 𝐴 ∩ 𝐵 ≠ ∅
b. every(𝐴, 𝐵) ⟺ 𝐴 ⊆ 𝐵
c. exactly three(𝐴, 𝐵) ⟺ #(𝐴 ∩ 𝐵) = 3
d. most(𝐴, 𝐵) ⟺ #(𝐴 ∩ 𝐵) > #(𝐴 − 𝐵)
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Conservativity

• A cherished semantic universal: all attested determiner-meanings
in natural language are conservative.

(2) An NL determiner 𝐷𝑒𝑡 is conservative iff:
𝐷𝑒𝑡(𝐴, 𝐵) ⟺ 𝐷𝑒𝑡(𝐴, 𝐴 ∩ 𝐵)

• A corollary: 𝐵 − 𝐴may not effect the truth of 𝐷𝑒𝑡(𝐴, 𝐵), if 𝐷𝑒𝑡 is
conservative.
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Non-conservative determiners

• The conservativity universal is substantive; non-conservative
determiners are easily expressible, e.g., the Härtig quantifier 𝐼.

(3) 𝐼(𝐴, 𝐵) ⟺ #𝐴 = #𝐵

• Assume
• 𝐴 = { 𝑎 } ; #𝐴 = 1
• 𝐵 = { 𝑏 } ; #𝐵 = 1
• 𝐴 ∩ 𝐵 = ∅;#(𝐴 ∩ 𝐵) = 0

• #𝐴 = #𝐵
• #𝐴 ≠ #(𝐴 ∩ 𝐵)
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Determiners as higher-order functions

• The ‘textbook’ treatment of determiners in compositional
semantics integrates them as higher-order functions via currying
(Heim & Kratzer 1998).

JsomeK ∶= 𝜆𝐴 ∈ 𝐷⟨𝑒,𝑡⟩ . 𝜆𝐵 ∈ 𝐷⟨𝑒,𝑡⟩ . some(
{ 𝑥 ∈ 𝐷 ∣ 𝐴(𝑥) = 1 } ,
{ 𝑥 ∈ 𝐷 ∣ 𝐵(𝑥) = 1 }

)

• Such meanings are easily integrated into the compositional regime
thanks to arbitrary functional types.

• This leads to an expressivity problem, since lexical entries for
non-conservative determiners can easily be stated.

• Nevertheless, the GQ-theoretic approach is the de facto standard in
formal semantics.
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Warming up: numeral semantics

• There’s an alternative to GQ-theory, developed specifically for bare
numerals.

• Numerals are decomposed into cardinality predicates + covert
existential quantification over pluralities (Link 1987, Verkuyl 1993,
Carpenter 1998).

(4) Three boys sneezed.
∃𝑋 , 𝑋 is a plurality of boys, #𝑋 = 3, each of 𝑋 sneezed.

• Ingredients (Winter 2001):
• Numerals as predicates of pluralities (in the sense of Link 1983).
• 𝐸𝑅: Existential Raising.
• 𝛥: The distributivity operator.
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Warming up cont.

(5) a. JthreeK = 𝜆𝑋 .#𝑋 = 3
b. 𝛥(𝑃) ∶= 𝜆𝑋 . ∀𝑥 ≤𝐴𝑡 𝑋, 𝑃(𝑋)
c. 𝐸𝑅(𝑄) ∶= 𝜆𝑃 . ∃𝑋[𝑄(𝑋) ∧ 𝑃(𝑋)]

(6) Three boys sneezed.
𝐸𝑅(𝜆𝑋 . JthreeK (𝑋) ∧ JboysK (𝑋))(𝛥(JsneezedK))
⇒ ∃𝑋[#𝑋 = 3, ∗boy(𝑋), ∀𝑥 ≤𝐴𝑡 𝑋[sneezed(𝑥)]]

• Resulting truth-conditions equivalent to those resulting from the
GQ-theoretic determiner three.

• Other determiners cannot be reanalyzed in this way, given
standard assumptions.
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Roadmap

• Goal: a compositional regime for (plural) determiners, in which
non-conservative meanings are not expressible.

• Basic ingredients:
• Existential raising.
• Distributivity.
• Determiners as predicates.

• Making sense of determiners-as-predicates will require a
re-jigging of the role of individuals in semantics.

• Concretely, I’ll exploit an idea due to Bledin (2024) that the
domain of individuals encodes a distinction between positive and
negative information.
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Negative individuals



Polarizing the domain

• Main innovation of Bledin (2024): the move from a domain of
ordinary individuals to a polarized domain (see also Akiba 2009).

• The polarized domain 𝐷± contains, for each individual 𝑥 ∈ 𝐷:
• 𝑥+: 𝑥’s positive counterpart.
• 𝑥−: 𝑥’s negative counterpart (pronounced “not 𝑥”).

𝐷 ∶= { 𝑎, 𝑏, 𝑐 }
𝐷± = { 𝑎+, 𝑎−, 𝑏+, 𝑏−, 𝑐+, 𝑐−,… }

• Ordinary individuals are in a one-to-one relationship with their
positive/negative counterparts.
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What is a negative individual?

• Negative individuals can be thought of as a formal device for
encoding an individual’s non-participation.

• If Jimmy happens to be swimming, then Jimmy− is not swimming,
and if Jimmy is not swimming, then Jimmy− is swimming.
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Constructing the polarized domain

• I’ll model pluralities as i-sums (Link 1983).
• The polarized domain 𝐷± is constructed in three steps:

• Take the smallest set containing 𝑥+ and 𝑥−, for every individual
𝑥 ∈ 𝐷.

• Close the resulting set under sum-formation⊕.
• Remove incoherent pluralities (Akiba 2009).
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Constructing the polarized domain cont.

(7) A plurality 𝑋 is incoherent, if there is some 𝑥 ∈ 𝐷, s.t.,
𝑥+ ≤𝐴𝑡 𝑋 and 𝑥− ≤𝐴𝑡 𝑋

• Importantly, this means that 𝐷± is not closed under⊕.
• 𝑎+ ⊕ 𝑏+ is coherent.
• 𝑎+ ⊕ 𝑏+ ⊕ 𝑏− is incoherent.

• The resulting structure is a sub-lattice with multiple maximal
elements, given a base domain with multiple elements.
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Plurality cont.

𝐷 ∶= { 𝑎, 𝑏, 𝑐 }

𝐷± ∶=

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎩

𝑎+ ⊕ 𝑏+ ⊕ 𝑐+,
𝑎+ ⊕ 𝑏+ ⊕ 𝑐−, 𝑎+ ⊕ 𝑏− ⊕ 𝑐+, 𝑎− ⊕ 𝑏+ ⊕ 𝑐+,
𝑎− ⊕ 𝑏− ⊕ 𝑐+, 𝑎− ⊕ 𝑏+ ⊕ 𝑐−, 𝑎+ ⊕ 𝑏− ⊕ 𝑐−,

𝑎− ⊕ 𝑏− ⊕ 𝑐−,
𝑎+ ⊕ 𝑏+, 𝑎+ ⊕ 𝑏−, 𝑎− ⊕ 𝑏+, 𝑎− ⊕ 𝑏−,
𝑎+ ⊕ 𝑐+, 𝑎+ ⊕ 𝑐−, 𝑎− ⊕ 𝑐+, 𝑎− ⊕ 𝑐−,
𝑏+ ⊕ 𝑐+, 𝑏+ ⊕ 𝑐−, 𝑏− ⊕ 𝑐+, 𝑏− ⊕ 𝑐−,

𝑎+, 𝑎−, 𝑏+, 𝑏−, 𝑐+, 𝑐−

⎫
⎪
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎪
⎭
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Plurality cont.

• The resulting plural polarized domain, which from here on we’ll
refer to as 𝐷±, thus contains many different pluralities, alongside
positive/negative atoms:

• Wholly-positive pluralities, e.g., 𝑎+ ⊕ 𝑏+; “𝑎 and 𝑏”
• Wholly-negative pluralities, e.g., 𝑎− ⊕ 𝑏−; “not 𝑎 and not 𝑏”
• Mixed-polarity pluralities, e.g., 𝑎+ ⊕ 𝑏−; “𝑎 and not 𝑏”
• A useful convention when talking about pluralities in the polarized

domain:
• 𝑋+ = {𝑥 ∈ 𝐷 ∣ 𝑥+ ≤𝐴𝑡 𝑋 }
• 𝑋− = {𝑥 ∈ 𝐷 ∣ 𝑥− ≤𝐴𝑡 𝑋 }

• E.g.,:
• (𝑎+ ⊕ 𝑏−)+ = { 𝑎 }
• (𝑎+ ⊕ 𝑏−)− = { 𝑏 }
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Distributivity

• I’ll assume that distributive predicates are still true of ordinary
individuals.

• Composition with elements of 𝐷± is mediated by the distributivity
operator 𝛥, which has the following definition (ignoring
homogeneity):

(8) Polarized distributivity operator:
𝛥(𝑃) ∶= 𝜆𝑋 ∈ 𝐷± . ∀𝑥 ∈ 𝑋+, 𝑃(𝑥) = 1

∧ ∀𝑥′ ∈ 𝑋−, 𝑃(𝑥′) = 0

• 𝛥(swim)(𝑎+ ⊕ 𝑏+ ⊕ 𝑐−) ⟺ 𝑎, 𝑏 both swim and 𝑏 doesn’t swim
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Plural marking and maximality

• How do NPs come to introduce elements of 𝐷±?

• I’ll assume that the contribution of plural marking is to take the
maximal elements of 𝐷±, such that every atomic part is the
pos/neg counterpart of an individual with the NP-property.

(9) JboyK = { 𝑎, 𝑏, 𝑐 }

(10) JboysK =Max≤ { 𝑋 ∈ 𝐷± || ∀𝑥 ∈ 𝑋+ ∪ 𝑋−, JboyK (𝑥) }

=
⎧
⎪
⎨
⎪
⎩

𝑎+ ⊕ 𝑏+ ⊕ 𝑐+,
𝑎+ ⊕ 𝑏+ ⊕ 𝑐−, 𝑎+ ⊕ 𝑏− ⊕ 𝑐+, 𝑎− ⊕ 𝑏+ ⊕ 𝑐+,
𝑎− ⊕ 𝑏− ⊕ 𝑐+, 𝑎− ⊕ 𝑏+ ⊕ 𝑐−, 𝑎+ ⊕ 𝑏− ⊕ 𝑐−,

𝑎− ⊕ 𝑏− ⊕ 𝑐−

⎫
⎪
⎬
⎪
⎭
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Maximal pluralities express boolean functions

• A useful isomorphism: elements of JboysK express total mappings
from boys to truth-values, depending on whether he participated
in some yet-to-be-named eventuality (Amir Anvari, p.c.).

𝑎+ ⊕ 𝑏+ ⊕ 𝑐− ≈
⎡
⎢
⎢
⎢
⎣

𝑎 → 1
𝑏 → 1
𝑐 → 0

⎤
⎥
⎥
⎥
⎦

• More generally, elements of 𝐷± are isomorphic to partial functions
from 𝐷 to { 1, 0 }.

• I’ll come back to this correspondence later.
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Application to numerals



Warming up: numeral semantics

• We can reconstruct a semantics for numerals as predicates of
elements of 𝐷±.

• Idea: numerals place cardinality constraints on the number of
individuals with positive counterparts in a plurality.

• Importantly, since maximality is inherent in plural marking,
numerals must have an at least semantics (cf. Winter 2001).

(11) two ∶= { 𝑋 ∈ 𝐷± ∣ #𝑋+ ≥ 2 }
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Numeral semantics cont.

(12) two ∶= { 𝑋 ∈ 𝐷± ∣ #𝑋+ ≥ 2 }

(13) two ∩ JboysK
=Max≤ { 𝑋 ∈ 𝐷± ∣ #𝑋+ ≥ 2, ∀𝑥 ∈ 𝑋+ ∪ 𝑋−,boy(𝑥) }

=
⎧
⎪
⎨
⎪
⎩

𝑎+ ⊕ 𝑏+ ⊕ 𝑐+,
𝑎+ ⊕ 𝑏+ ⊕ 𝑐−, 𝑎+ ⊕ 𝑏− ⊕ 𝑐+, 𝑎− ⊕ 𝑏+ ⊕ 𝑐+,
(((((((hhhhhhh𝑎− ⊕ 𝑏− ⊕ 𝑐+,(((((((hhhhhhh𝑎− ⊕ 𝑏+ ⊕ 𝑐−,(((((((hhhhhhh𝑎+ ⊕ 𝑏− ⊕ 𝑐−,

(((((((hhhhhhh𝑎− ⊕ 𝑏− ⊕ 𝑐−

⎫
⎪
⎬
⎪
⎭
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Numeral semantics cont.

• Together with existential raising (𝐸𝑅) and distributivity (𝛥),
delivers at least truth-conditions:

(14) Two boys sneezed.
𝐸𝑅(two ∩ JboysK)(𝛥(sneezed))
⇒ 𝛥(sneezed)(𝑎+ ⊕ 𝑏+ ⊕ 𝑐+)

∨ 𝛥(sneezed)(𝑎+ ⊕ 𝑏+ ⊕ 𝑐−)
∨ 𝛥(sneezed)(𝑎+ ⊕ 𝑏− ⊕ 𝑐+)
∨ 𝛥(sneezed)(𝑎− ⊕ 𝑏+ ⊕ 𝑐+)
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Complex numerals

• This strategy generalizes to complex numeral expressions, which
can all be treated as predicates of pluralities:

(15) exactly 2 ∶= { 𝑋 ∈ 𝐷± ∣ #𝑋+ = 2 }

(16) between 3 and5 ∶= { 𝑋 ∈ 𝐷± ∣ 3 ≤ #𝑋+ ≤ 5 }

(17) less than 3 ∶= { 𝑋 ∈ 𝐷± ∣ #𝑋+ < 3 }

• Incorporating negative individuals immediately improves over a
classical treatment of numerals as predicates with 𝐸𝑅 in some
important respects:

• Avoids van Benthem’s problem with distributive predicates.
• Avoids unwanted existential entailments for less than 𝑛
• Allows “zero” to be treated as a numeral.
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van Benthem’s problem

• In a classical setting, existential quantification renders
upper-bounds inert; the following are equivalent (van Benthem
1986).

• ∃𝑋[#𝑋 = 2, 𝑋 ∈ ∗boy, ∀𝑥 ∈ 𝑋, 𝑃(𝑥)]
• ∃𝑋[#𝑋 ≥ 2, 𝑋 ∈ ∗boy, ∀𝑥 ∈ 𝑋, 𝑃(𝑥)]

• Thanks to maximality in NP-extensions, this problem doesn’t arise:

(18) exactly 2 ∩ JboysK =
⎧
⎪
⎨
⎪
⎩

(((((((hhhhhhh𝑎+ ⊕ 𝑏+ ⊕ 𝑐+,
𝑎+ ⊕ 𝑏+ ⊕ 𝑐−, 𝑎+ ⊕ 𝑏− ⊕ 𝑐+, 𝑎− ⊕ 𝑏+ ⊕ 𝑐+,
(((((((hhhhhhh𝑎− ⊕ 𝑏− ⊕ 𝑐+,(((((((hhhhhhh𝑎− ⊕ 𝑏+ ⊕ 𝑐−,(((((((hhhhhhh𝑎+ ⊕ 𝑏− ⊕ 𝑐−,

(((((((hhhhhhh𝑎− ⊕ 𝑏− ⊕ 𝑐−

⎫
⎪
⎬
⎪
⎭

• 𝐸𝑅 derives the attested truth-conditions; in my Sinn und
Bedeutung poster, I applied this to the problem of cumulative
readings (Brasoveanu 2013). 23



Unwanted existential entailments

• In a classical setting, the predicative treatment of “less than 𝑛”
leads to unwanted existential entailments (Buccola & Spector
2016).

• ∃𝑋[#𝑋 < 𝑛, 𝑋 ∈ ∗boy(𝑋), 𝑃(𝑋)]
• This is because there are no pluralities with cardinality 0; the

minimal pluralities are atoms.
• This problem doesn’t arise here, thanks to wholly negative

pluralities.

(19) less than 2 ∩ JboysK =
⎧
⎪
⎨
⎪
⎩

(((((((hhhhhhh𝑎+ ⊕ 𝑏+ ⊕ 𝑐+,
(((((((hhhhhhh𝑎+ ⊕ 𝑏+ ⊕ 𝑐−,(((((((hhhhhhh𝑎+ ⊕ 𝑏− ⊕ 𝑐+,(((((((hhhhhhh𝑎− ⊕ 𝑏+ ⊕ 𝑐+,
𝑎− ⊕ 𝑏− ⊕ 𝑐+, 𝑎− ⊕ 𝑏+ ⊕ 𝑐−, 𝑎+ ⊕ 𝑏− ⊕ 𝑐−,

𝑎− ⊕ 𝑏− ⊕ 𝑐−

⎫
⎪
⎬
⎪
⎭
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Zero

• In a classical setting, a predicative treatment of “zero NPs” isn’t
viable; since the minimal pluralities are atoms, a predicative
treatment of “zero” leads to a necessary contradiction.

• A treatment of “zero” is straightforward here, with the proviso that
it must have an exactly semantics to avoid a necessary tautology
(Bylinina & Nouwen 2018).

(20) zero = {𝑋 ∈ 𝐷± ∣ #𝑋 = 0 }

(21) zero ∩ JboysK =
⎧
⎪
⎨
⎪
⎩

(((((((hhhhhhh𝑎+ ⊕ 𝑏+ ⊕ 𝑐+,
(((((((hhhhhhh𝑎+ ⊕ 𝑏+ ⊕ 𝑐−,(((((((hhhhhhh𝑎+ ⊕ 𝑏− ⊕ 𝑐+,(((((((hhhhhhh𝑎− ⊕ 𝑏+ ⊕ 𝑐+,
(((((((hhhhhhh𝑎− ⊕ 𝑏− ⊕ 𝑐+,(((((((hhhhhhh𝑎− ⊕ 𝑏+ ⊕ 𝑐−,(((((((hhhhhhh𝑎+ ⊕ 𝑏− ⊕ 𝑐−,

𝑎− ⊕ 𝑏− ⊕ 𝑐−

⎫
⎪
⎬
⎪
⎭
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On the bottom element

• Buccola & Spector (2016) entertain extending Link’s plural
ontology with a bottom element ⊥, s.t., #⊥ = 0, in order to solve
the existential entailment problem with less than 𝑛

• Bylinina & Nouwen (2018) consider the same move, in order to
give a principled semantics for “zero”.

• In the current setting, maximal, wholly negative pluralities play the
same role as the bottom element.

• This however was not tailored as a solution for these problems, but
falls out as a happy accident.

• Ask me about presupposition projection for an independent
argument that negative individuals are preferable to the bottom
element.
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Connection to GQ theory

• Tellingly, none of the problems I’ve noted arise on a GQ-theoretic
treatment of numerals either, since GQ-theory makes no reference
to pluralities:

(22) less than 3(𝑅, 𝑆) ⟺ #(𝑅 ∩ 𝑆) < 3

• (22) of course holds if 𝑅 ∩ 𝑆 is empty.

• Negative individuals allow us to retain both the expressive
advantages of GQ-theory, and the advantages of treating numerals
as predicates of pluralities.
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Connection to GQ theory cont.

• In the following section, I’ll demonstrate that negative individuals
are not just handy for numeral semantics.

• Not just numerals, but all conservative determiners may be defined
as predicates of pluralities.

• The LF for quantificational statements generalizes the
compositional strategy developed for numerals.

• Furthermore, non-conservative determiners are not expressible as
predicates of pluralities; if all determiners are predicates, the
conservativity universal is explained.

28



Determiners and conservativity



A unified LF for quantificational statements

∃𝑋 ∈ (𝐷𝑒𝑡 ∩ JNPK), ∀𝑥 ∈ 𝑋+, JVPK (𝑥),
∀𝑥 ∈ 𝑋−, ¬ JVPK (𝑥)

𝜆𝑄 . ∃𝑋 ∈ (𝐷𝑒𝑡 ∩ JNPK), 𝑄(𝑋)
𝐸𝑅 { 𝑋 ∈ 𝐷± ∣ … }

𝐷𝑒𝑡 NP

𝜆𝑋 . ∀𝑥 ∈ 𝑋+, JVPK (𝑥),
∀𝑥 ∈ 𝑋−, ¬ JVPK (𝑥)

𝛥 VP
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Defining some basic determiners

• We’ve already seen that with negative individuals, we can easily
define both bare and complex numerals as predicates of pluralities.

• This strategy can easily be extended to existential/universal
determiners, by placing constraints on 𝑋+ and 𝑋−.

(23) some = {𝑋 ∈ 𝐷± ∣ 𝑋+ ≠ ∅ }

(24) all = {𝑋 ∈ 𝐷± ∣ 𝑋− = ∅ }

(25) no = {𝑋 ∈ 𝐷± ∣ 𝑋+ = ∅ }

(26) not all = {𝑋 ∈ 𝐷± ∣ 𝑋− ≠ ∅ }

30



Defining some basic determiners cont.

• It can easily be verified that these entries give rise to the right
truth-conditions.

• In particular, there is always a unique maximal NP plurality in 𝐷±

with no negative parts, and a unique maximal NP plurality in 𝐷±

with no positive parts.

(27) All boys sneeze.
⇒ 𝐸𝑅(all ∩ JboysK)(𝛥(JsneezeK)) ⇒ 𝛥(JsneezeK)(𝑎+ ⊕ 𝑏+ ⊕ 𝑐+)

(28) No boys sneeze.
⇒ 𝐸𝑅(no ∩ JboysK)(𝛥(JsneezeK)) ⇒ 𝛥(JsneezeK)(𝑎− ⊕ 𝑏− ⊕ 𝑐−)
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Proportional determiners

• This strategy extends to proportional determiners via cardinality
comparisons.

(29) most = {𝑋 ∈ 𝐷± ∣ #𝑋+ > #𝑋− }

(30) exactly half = {𝑋 ∈ 𝐷± ∣ #𝑋+ = #𝑋− }

(31) most ∩ JboysK =
⎧
⎪
⎨
⎪
⎩

𝑎+ ⊕ 𝑏+ ⊕ 𝑐+,
𝑎+ ⊕ 𝑏+ ⊕ 𝑐−, 𝑎+ ⊕ 𝑏− ⊕ 𝑐+, 𝑎− ⊕ 𝑏+ ⊕ 𝑐+,
(((((((hhhhhhh𝑎− ⊕ 𝑏− ⊕ 𝑐+,(((((((hhhhhhh𝑎− ⊕ 𝑏+ ⊕ 𝑐−,(((((((hhhhhhh𝑎+ ⊕ 𝑏− ⊕ 𝑐−,

(((((((hhhhhhh𝑎− ⊕ 𝑏− ⊕ 𝑐−

⎫
⎪
⎬
⎪
⎭
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Defining non-conservative determiners

• What would it take to define a non-conservative determiner in
this system?

• Take the Härtig quantifier 𝐼:

(32) 𝐼(𝐴, 𝐵) ⟺ #𝐴 = #𝐵

• In the current system, a 𝐷𝑒𝑡 is a predicate that composes with a
plural NP via intersective modification. Therefore:

(𝐷𝑒𝑡 ∩ JNPK) ⊆ JNPK
• The NP itself delimits possible determiner meanings; each

plurality 𝑋 ∈ JNPK encodes information, for each 𝑥 ∈ 𝐴, about
whether 𝑥 is true or false of 𝐵.

• See (Westerståhl 2024) for a related notion of restricted
quantification.
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Defining non-conservative determiners cont.

• In order to define 𝐼, we need to access just the scope set 𝐵
independently of the restrictor 𝐴.

• It’s clearly not possible to access 𝐵 by taking a subset of JNPK:
• Given a maximal NP plurality 𝑋 :

• 𝑋+ ∪ 𝑋− = 𝐴
• 𝑋+ ∩ 𝑋− = ∅
• 𝑋+ = 𝐴 ∩ 𝐵
• 𝑋− = 𝐴−𝐵

• A standard conceptualization of conservativity is that it rules out
determiner meanings which make reference to the scope, not
relative to the restrictor.
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Maximal pluralities and complete answers

• In a sentence of the form [𝐷𝑒𝑡 NP VP], each element of JNPK
corresponds to a complete answer to the question, “who of NP did
VP?”.

• Selecting a subset of JNPK will invariably deliver a proposition that
is relevant (in the sense of von Fintel & Heim 2023), relative to the
partition induced by “who of 𝐴 did 𝐵?”.

• Conjecture: conservative, but not non-conservative determiners
make 𝐷𝑒𝑡(𝐴, 𝐵) relevant to “who of 𝐴 did 𝐵?”.

35



Non-conservative determiners are not expressible

• Let 𝑅 be an arbitrary restrictor.

• Consider Max { 𝑋 ∈ 𝐷± ∣ ∀𝑥 ∈ 𝑋+ ∪ 𝑋−, 𝑅(𝑥) }.
• As we’ve seen, this set is isomorphic to the set of functions
ℝ ∶= { 𝑓 ∣ 𝑓 ∶ 𝑅 ↦ { 1, 0 } }

• Assuming 𝑅 ∶= { 𝑎, 𝑏 }

ℝ =

⎡
⎢
⎢
⎢
⎢
⎣

𝑎+⊕𝑏+

⏞⎴⏞⎴⏞
[
𝑎 → 1
𝑏 → 1

],

𝑎+⊕𝑏−

⏞⎴⏞⎴⏞
[
𝑎 → 1
𝑏 → 0

],

𝑎−⊕𝑏+

⏞⎴⏞⎴⏞
[
𝑎 → 0
𝑏 → 1

],

𝑎−⊕𝑏−

⏞⎴⏞⎴⏞
[
𝑎 → 0
𝑏 → 0

]

⎤
⎥
⎥
⎥
⎥
⎦
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Non-conservative determiners are not expressible cont.

• 𝐷𝑒𝑡(ℝ) ⊆ ℝ (determiners are restrictive modifiers).
• For example, “most” picks out the smallest subset of ℝ containing

every function that maps more elements of 𝑅 to 1 than 0.
• 𝑓+ = { 𝑥 ∈ dom(𝑓) ∣ 𝑓(𝑥) = 1 }
• 𝑓− = { 𝑥 ∈ dom(𝑓) ∣ 𝑓(𝑥) = 0 }

(33) most boys ≈ { 𝑓 ∣ 𝑓 ∶ boy↦ {1, 0 } , 𝑓+ > 𝑓− }

⎧⎪
⎨⎪
⎩

⎡
⎢
⎢
⎢
⎣

𝑎 → 1
𝑏 → 1
𝑐 → 1

⎤
⎥
⎥
⎥
⎦

,
⎡
⎢
⎢
⎢
⎣

𝑎 → 1
𝑏 → 1
𝑐 → 0

⎤
⎥
⎥
⎥
⎦

,
⎡
⎢
⎢
⎢
⎣

𝑎 → 1
𝑏 → 0
𝑐 → 1

⎤
⎥
⎥
⎥
⎦

,
⎡
⎢
⎢
⎢
⎣

𝑎 → 0
𝑏 → 1
𝑐 → 1

⎤
⎥
⎥
⎥
⎦

⎫⎪
⎬⎪
⎭
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Non-conservative determiners are not-expressible

• How does 𝐷𝑒𝑡(ℝ) combine with the scope 𝑆 ∶ 𝐷 ↦ { 1, 0 }.
• 𝐸𝑅 + 𝛥 leads to the requirement there is an 𝑓 ∈ 𝐷𝑒𝑡(ℝ), s.t., 𝑓 and
𝑆 agree on Dom(𝑓).

• The resulting truth-conditions of a quantificational statement can
be reformulated in terms of Boolean functions:

∃𝑓 ∈ 𝐷𝑒𝑡(ℝ), ∀𝑥 ∈ dom(𝑓)(𝑓(𝑥) ⟺ 𝑆(𝑥))
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Informal demonstration cont.

∃𝑓 ∈ 𝐷𝑒𝑡(ℝ), ∀𝑥 ∈ dom(𝑓)(𝑓(𝑥) ⟺ 𝑆(𝑥))

• It’s obvious from this formulation that 𝑆 − 𝑅 cannot effect the
resulting truth-conditions, since as long as 𝐷𝑒𝑡(ℝ) ⊆ ℝ, any choice
of 𝑓 is s.t., dom(𝑓) = 𝑅

• To determine whether 𝑓 and 𝑆 agree on Dom(𝑓), we only need to
look at Dom(𝑓) ∩ 𝑆, i.e., 𝑅 ∩ 𝑆.

• Any determiner expressible in this way must be conservative.
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Any conservative determiner is expressible

• Let 𝑅𝐶𝑜𝑛𝑠 be a conservative determiner.

𝑅𝐶𝑜𝑛𝑠(𝐴, 𝐵) ⟺ 𝑅𝐶𝑜𝑛𝑠(𝐴, 𝐴 ∩ 𝐵)

• 𝑅𝐶𝑜𝑛𝑠 gives rise to a set of boolean functions as follows:
• 𝑓+ ∪ 𝑓− ≈ (𝐴 ∩ 𝐵) ∪ (𝐴 − 𝐵) ≈ 𝐴
• 𝑓+ ≈ 𝐴 ∩ 𝐵

(34) { 𝑓 ∣ ∃𝑋 ∈ 𝐷, 𝑓 ∶ 𝑋 ↦ { 1, 0 } , 𝑅𝐶𝑜𝑛𝑠(𝑓+ ∪ 𝑓−, 𝑓+) }

• This is isomorphic to a subset of 𝐷±.
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Example: Most as a property of Boolean functions

(35) { 𝑓
||||

∃𝑋 ∈ 𝐷, 𝑓 ∶ 𝑋 ↦ { 1, 0 } ,
most(𝑓+ ∪ 𝑓−, 𝑓+)

}

(36) { 𝑓
||||

∃𝑋 ∈ 𝐷, 𝑓 ∶ 𝑋 ↦ { 1, 0 } ,
#((𝑓+ ∪ 𝑓−) ∩ 𝑓+) > #((𝑓+ ∪ 𝑓−) − 𝑓+)

}

(37) ≡ { 𝑓
||||

∃𝑋 ∈ 𝐷, 𝑓 ∶ 𝑋 ↦ { 1, 0 } ,
#𝑓+ > #𝑓−

}

(38) ≡ { 𝑓
||||

∃𝑋 ∈ 𝐷, 𝑓 ∶ 𝑋 ↦ { 1, 0 } ,
#𝑓+ > #𝑓−

} ∩ { 𝑓 ∣ 𝑓 ∶ boy→ {1, 0 } }

(39) { 𝑓 ∣ 𝑓 ∶ boy→ {1, 0 } , #𝑓+ > #𝑓− }

(40) ∃𝑓 ∶ boy↦ {1, 0 } , #𝑓+ > #𝑓−,
∀𝑥 ∈ boy[𝑓(𝑥) ⟺ sneeze(𝑥)]
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Extensions and open issues



Semantic singularity and collective predication

• The current framework struggles to account for the distinction
between:

• “No boy” vs. “no boys”
• “Some boy” vs. “some boys”
• “Every boy” vs. “all boys”

• No worse than GQ-theory, but it order to give a uniform
semantics for determiners, we need a more sophisticated notion of
plurality/singularity.
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Semantic singularity and collective predication cont.

• Relatedly, how to account for collective predication?

(41) Some boys met in the park.

(42) #Some boy met in the park.

• A natural move is to also consider positive/negative counterparts
of i-sums, e.g., (𝑎 ⊕ 𝑏 ⊕ 𝑐)− (Justin Bledin, p.c.).

• singular NPs range over maximal sums of atomic counterparts;
plural NPs range over maximal sums of plural counterparts.

• Exploring the ramifications of this set-up, and its applications to
semantic singularity/plurality and collective predication is the next
step in this research program.
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Conclusion

• I’ve developed a system for determiner meanings which allows us
to make sense of Logical Forms that look like the following:

(43) Most boys sneezed.
There exists an 𝑋 s.t., most(𝑋) ∧ boys(𝑋) ∧ sneezed(𝑋).

• I’ve suggested that this solves the expressivity problem that arises
with determiners qua higher-order functions.

• If determiners are uniformly predicates of pluralities, all (attested)
conservative determiners can be expressed, but non-conservative
determiners can’t be expressed.

• An explicit comparison with the structural approach to
conservativity (Romoli 2015) is left for another occasion.
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ℱ𝒾𝓃

44



References i

Akiba, Ken. 2009. A NewTheory of Quantifiers and Term
Connectives. Journal of Logic, Language and Information 18(3). 403–431.
https://doi.org/10.1007/s10849-009-9095-8.
https://doi.org/10.1007/s10849-009-9095-8 (14 April, 2024).
Barwise, Jon & Robin Cooper. 1981.Generalized quantifiers and
natural language. Linguistics and Philosophy 4(2). 159–219.
https://doi.org/10.1007/BF00350139.
https://doi.org/10.1007/BF00350139 (20 September, 2021).
van Benthem, Johan. 1986. Essays in Logical Semantics. (Studies in
Linguistics and Philosophy). Springer Netherlands.
https://doi.org/10.1007/978-94-009-4540-1.
https://www.springer.com/gp/book/9789027720924 (18 September, 2020).

45

https://doi.org/10.1007/s10849-009-9095-8
https://doi.org/10.1007/s10849-009-9095-8
https://doi.org/10.1007/BF00350139
https://doi.org/10.1007/BF00350139
https://doi.org/10.1007/978-94-009-4540-1
https://www.springer.com/gp/book/9789027720924


References ii

Bledin, Justin. 2024. Composing menus. Unpublished draft. Johns
Hopkins University.
Brasoveanu, Adrian. 2013.Modified Numerals as
Post-Suppositions. Journal of Semantics 30(2). 155–209.
https://doi.org/10.1093/jos/ffs003.
https://doi.org/10.1093/jos/ffs003 (13 February, 2022).
Buccola, Brian & Benjamin Spector. 2016.Modified numerals and
maximality. Linguistics and Philosophy 39(3). 151–199.
https://doi.org/10.1007/s10988-016-9187-2.
http://link.springer.com/10.1007/s10988-016-9187-2 (10 September,
2024).

46

https://doi.org/10.1093/jos/ffs003
https://doi.org/10.1093/jos/ffs003
https://doi.org/10.1007/s10988-016-9187-2
http://link.springer.com/10.1007/s10988-016-9187-2


References iii

Bylinina, Lisa & Rick Nouwen. 2018.On “zero” and semantic
plurality. Glossa-an International Journal of Linguistics: a journal of
general linguistics 3(1). https://doi.org/10.5334/gjgl.441.
http://www.glossa-journal.org//articles/10.5334/gjgl.441/.
Carpenter, Bob. 1998. Type-logical semantics. (Language, Speech,
and Communication). Cambridge, Mass: MIT Press. 575 pp.
Heim, Irene & Angelika Kratzer. 1998. Semantics in generative
grammar. (Blackwell Textbooks in Linguistics 13). Malden, MA:
Blackwell. 324 pp.
Keenan, Edward L. & Jonathan Stavi. 1986. A semantic
characterization of natural language determiners. Linguistics and
Philosophy 9(3). 253–326. https://doi.org/10.1007/BF00630273.
https://doi.org/10.1007/BF00630273 (13 September, 2024).

47

https://doi.org/10.5334/gjgl.441
http://www.glossa-journal.org//articles/10.5334/gjgl.441/
https://doi.org/10.1007/BF00630273
https://doi.org/10.1007/BF00630273


References iv

Link, Godehard. 1983.The logical analysis of plurals and mass
terms - A Lattice-Theoretic Approach. In Paul Portner &
Barbara H. Partee (eds.), Formal semantics: The essential readings,
127–147. Blackwell.
Link, Godehard. 1987.Generalized Quantifiers and Plurals. In
Peter Gärdenfors (ed.), Generalized Quantifiers: Linguistic and Logical
Approaches, 151–180. Dordrecht: Springer Netherlands.
https://doi.org/10.1007/978-94-009-3381-1_6.
https://doi.org/10.1007/978-94-009-3381-1_6 (19 April, 2024).
Romoli, Jacopo. 2015. A structural account of conservativity.
Semantics-Syntax Interface 2(1). 28–57.

48

https://doi.org/10.1007/978-94-009-3381-1_6
https://doi.org/10.1007/978-94-009-3381-1_6


References v

Verkuyl, Henk J. 1993. ATheory of Aspectuality: The Interaction
between Temporal and Atemporal Structure. 1st edn. Cambridge
University Press. https://doi.org/10.1017/CBO9780511597848. https://
www.cambridge.org/core/product/identifier/9780511597848/type/book
(19 September, 2024).
von Fintel, Kai & Irene Heim. 2023. Intensional semantics.
Unpublished textbook. MIT. file:///home/patrl/Downloads/fintel-
heim-2023-IntensionalSemantics.pdf.
Westerståhl, Dag I. 2024.Generalized quantifiers. In
Edward N. Zalta & Uri Nodelman (eds.), The Stanford Encyclopedia of
Philosophy, Fall 2024.
https://plato.stanford.edu/archives/fall2024/entries/generalized-
quantifiers.

49

https://doi.org/10.1017/CBO9780511597848
https://www.cambridge.org/core/product/identifier/9780511597848/type/book
https://www.cambridge.org/core/product/identifier/9780511597848/type/book
file:///home/patrl/Downloads/fintel-heim-2023-IntensionalSemantics.pdf
file:///home/patrl/Downloads/fintel-heim-2023-IntensionalSemantics.pdf
https://plato.stanford.edu/archives/fall2024/entries/generalized-quantifiers
https://plato.stanford.edu/archives/fall2024/entries/generalized-quantifiers


References vi

Winter, Yoad. 2001. Flexibility principles in boolean semantics -
the interpretation of coordination, plurality, and scope in natural
language. (Current Studies in Linguistics 37). Cambridge
Massachussetts: The MIT Press. 297 pp.

50


	Background
	Negative individuals
	Application to numerals
	Determiners and conservativity
	Extensions and open issues

